Recent development of intelligent object detection systems requires high-definition images for reliable detection accuracy performance, which can cause a high occupation problem of network bandwidth as well as archiving storage capacity. In this paper, we propose an objectness measure-based image compression method of thermal images for machine vision. Based on the objectness of a certain area, bounding box for the area with high objectness is adjusted in order not to affect the possible object detection performance and the image is compressed in a way that the area having a high objectness is compressed with lower compression ratio than other area. The experiments indicate that superior object detection accuracy at comparable BPP is accomplished using the proposed scheme to that of the state-of-the-art video compression method.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.