Thermal image quality is critical to accurately quantify spatial and temporal growth and stress patterns of field crops. Image quality can be impacted by several factor including environment, flying altitude, and camera focal length. Often times the thermal sensor selection is based upon price or already owned sensor. Metrics are available to select the flight altitude based on thermal sensor for desired ground resolution, however no study have been conducted to provide relative difference in image quality and efficiency of generating a thermal orthomosaic. Therefore, this study was conducted with goal to compare accuracy of canopy temperature quantification and assess the quality of thermal orthomosaic when using thermal sensor of different focal length and image acquisition at varying flying altitudes of a sUAS. Three thermal infrared cameras were selected with focal lengths of 9mm, 13mm, and 19mm. All three cameras were flown at altitudes of 20m, 50m, and 80m, to collect aerial imagery of 7,000 m2 soybeans field. The cameras were mounted on a rotary quadcopter. All flights were conducted at 3 m/s flying speed, and 1 second shutter trigger interval. A ground reference system provided ground truth data for thermometric transformations. Imagery data was compared to assess differences in number of images collected, percentage overlap required for 1 second shutter trigger interval, quality of orthomosaic and accuracy of canopy temperatures. Results show that 13 mm focal length and 50 m altitude result in a finer resolution orthomosaic. The canopy temperatures were quantified accurately regardless of altitude and focal length.
Thermal image quality is very critical for accurately quantify spatial and temporal growth and stress patterns of field crops. Image quality can be impacted by many factors including environment, flying altitude, and camera focal length. Often times the thermal sensor selection is based upon price or already owned sensor. Metrics are available to select the flight altitude based on the thermal sensor for desired ground resolution, however, no study has been conducted to provide the relative difference in image quality and efficiency of generating a thermal orthomosaic. Therefore, this study was conducted with the goal to compare the accuracy of canopy temperature quantification and assess the quality of thermal orthomosaic when using a thermal sensor of different focal length and image acquisition at varying flying altitudes. Three thermal infrared cameras were selected with focal lengths of 9mm, 13mm, and 19mm. All three cameras were flown at altitudes of 10m, 40m, and 70m, to collect aerial imagery of 7,000 m2 soybeans field. The cameras were mounted on a rotary quadcopter. All flights were conducted at 3 m/s flying speed, and 1 second shutter trigger interval. A ground reference system provided ground truth data for thermometric transformations. Imagery data was compared to assess differences in number of images collected, percentage overlap required for 1 second shutter trigger interval, quality of orthomosaic and accuracy of canopy temperatures. Preliminary results show that 13 mm focal length and 40 m altitude result in a finer resolution orthomosaic. The canopy temperatures were quantified accurately regardless of altitude and focal length.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.