Epsilon-near-zero (ENZ) materials also defined as near zero permittivity materials have attracted much attention for their peculiar physical features. In this work, we study analytically and numerically the emission decay rate of a hybrid system combining a vertical dipolar emitter in the presence of ENZ spherical Nano-particle. We examine the asymptotic behavior of the fluorescence decay rate in the near field of the ENZ spherical nanoparticle. We demonstrate the competition between the radiative and non-radiative channels. Our results show that a fundamental understanding of multiple contributions is critical to control the fluorescence decay rate in its molecular environment.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.