In the surface-enhanced fluorescence (SEF) process, it is well known that the plasmonic nanostructure can enhance the light emission of fluorescent emitters. With the help of atomic force microscopy, a hybrid system consisting of a fluorescent nanodiamond and a gold nanoparticle was assembled step-by-step for in situ optical measurements. We demonstrate that fluorescent emitters can also enhance the light emission from gold nanoparticles which is judged through the intrinsic anti-Stokes emission owing to the nanostructures. The light emission intensity, spectral shape, and lifetime of the hybrid system were dependent on the coupling configuration. The interaction between gold nanoparticles and fluorescent emitter was modelled based on the concept of a quantised optical cavity by considering the nanodiamond and the nanoparticle as a two-level energy system and a nanoresonator, respectively. The theoretical calculations reveal that the dielectric antenna effect can enhance the local field felt by the nanoparticle, which contributes more to the light emission enhancement of the nanoparticles rather than the plasmonic coupling effect. The findings reveal that the SEF is a mutually enhancing process. This suggests the hybrid system should be considered as an entity to analyse and optimise surface-enhanced spectroscopy.
Luminescence quantum yields (QYs) of gold nanoparticles including nanorods, nanobipyramids and nanospheres are
measured elaborately at single nanoparticle level with different excitation wavelengths. It is found that the QYs of the
nanostructures are essentially dependent on the excitation wavelength. The QY is higher when the excitation wavelength
is blue-detuned and close to the nanoparticles’ surface plasmon resonant peak. A phenomenological model based on
plasmonic resonator concept is proposed to understand the experimental findings. The excitation wavelength dependent
of QY is attributed to the wavelength dependent coupling efficiency between the free electrons oscillation and the
intrinsic plasmon resonant radiative mode. These studies should contribute to the understanding of one-photon
luminescence from metallic nanostructures and plasmonic surface enhanced spectroscopy.
Strong Stokes and anti-Stokes one-photon luminescence from single gold nanorods is measured in experiments. It is found that the intensity and polarization of the Stokes and anti-Stokes emissions are in strong correlation. Our experimental observation discovered a coherent process in light emission from single gold nanorods. We present a theoretical mode, based on the concept of cavity resonance, for consistently understanding both Stokes and anti-Stokes photoluminescence. Our theory is in good agreement of all our measurements.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.