For soldier recognition in the battlefield environment, there are factors such as camouflage and object occlusion, thus leading to incomplete feature information and poor recognition effect. In this paper, we first construct a soldier target dataset conforming to the characteristics of the battlefield environment by analyzing the factors influencing the battlefield environment. Then this paper improves the yolov5 algorithm to detect soldier recognition quickly by adding a channel attention mechanism and improving the spatial pyramid pooling structure. The implementation results show that the predicted mAP value can reach 0.946 with a 3% improvement, the recall rate reaches 0.86, and the detection speed is improved by 5%. It achieves better recognition of soldiers in the battlefield environment.
The simplistic infrared target observation feature is the main reason for that the particle filter tracking algorithm are always failed. Considering the limitations of infrared target feature description, we constructed an observation model based on high frequency features and high frequency features. The template update method was also analyzed. Finally, we designed the flow of particle filter tracking algorithm combining the gray feature and the high frequency feature. The simulation results show that proposed method has the good robustness and accuracy in infrared target tracking under complex background.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.