The fluctuation–magnification effect on the peak intensity of a laser pulse caused by the nonlinear Kerr effect in the chirped volume Bragg grating (CVBG) compressor is investigated experimentally for a high-energy, thin-disk, chirped pulse amplification system. The nonlinear Kerr effect occurs at the blue end, and the accumulated nonlinear phase shift (B-integral) in the CVBG rises with the increase of laser pulse energy. Experiments show that small fluctuations in peak power of uncompressed pulses cause increasing of the temporal fluctuation and spatial fluctuation due to high Kerr-nonlinearity in the CVBG when B-integral is larger than π. Thus the initial fluctuation would be magnified by the CVBG compressor.
In many fields of modern physics and industrial applications high-average power pulsed diode-pumped solid-state lasers are essential. Scaling of these lasers towards higher pulse energies is often limited by the onset of thermal effects which are determined by the average power. In this paper we would like to propose a way of increasing the pulse energies by operating the PERLA B laser system in 100 Hz burst mode with 1 ms burst duration and intra-burst repetition rate of 10 kHz. The CPA-based system incorporates fiber front-end, regenerative amplifier and the multipass amplifier followed by the booster amplifier and <2ps compressor.
In this paper, a practical model of a thin disk regenerative amplifier has been developed based on an analytical approach,
in which Drew A. Copeland [1] had evaluated the loss rate of the upper state laser level due to ASE and derived the analytical
expression of the effective life-time of the upper-state laser level by taking the Lorentzian stimulated emission line-shape
and total internal reflection into account. By adopting the analytical expression of effective life-time in the rate equations,
we have developed a less numerically intensive model for predicting and analyzing the performance of a thin disk
regenerative amplifier. Thanks to the model, optimized combination of various parameters can be obtained to avoid
saturation, period-doubling bifurcation or first pulse suppression prior to experiments. The effective life-time due to ASE
is also analyzed against various parameters. The simulated results fit well with experimental data. By fitting more
experimental results with numerical model, we can improve the parameters of the model, such as reflective factor which
is used to determine the weight of boundary reflection within the influence of ASE. This practical model will be used to
explore the scaling limits imposed by ASE of the thin disk regenerative amplifier being developed in HiLASE Centre.
Periodically poled crystals are widely used as SHG, DFG, SFG, OPO and THz generation, and there is a broad application prospect in some areas such as the laser display, optical fiber communication, atmospheric exploration and military confrontation. At present, to get the parameters of periodically poled crystals, like duty ratio, the main method is chemical etching of the samples. In this paper, we present a nondestructive characterization system of periodically poled crystals. When we apply a proper high voltage on both sides of the periodically poled crystal, the refractive index difference of positive and negative domain will be increased and we can observe a clear domain pattern by the a microscope so as to obtain general information. Then a single frequency laser is prepared to radiate on +z surface of the periodically poled crystal, we can get some orders of diffraction according to diffraction optics principle. Finally, we can measure the parameters such as period, duty ratio by use of numerical analysis. The testing sample size of this system can be up to 60mm, The accuracy of the testing period can be 0.1μm, and the measurement range of duty ratio is 20%-50%.
Here we report that the properties of the poling electrode is one of the most important factors in fabrication of the ferroelectric crystal poling. In this paper, systematic researches on the property of electrode coating and the forms of electrode contact have been made. By using pulse applied electric field, the periodically poled grating of 31.2μm was prepared on a 1mm thick 5% MgO-doped Lithium Niobate crystal. A wavelength of 1064nm pulse laser was used as fundamental source to operate optical parametric oscillation experiment, and 1.141W of idler output power was obtained when PPMgOLN pumped by 1064nm of 5.567W at the temperature of 80℃. The maximum conversion efficiency from incident pump power to the idler output achieved to 20.1%.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.