Single-pixel imaging has gained prominence for its wide working wavelength and high sensitivity. Deep learning-based single-pixel imaging shows superiority in real-time reconstruction, particularly with limited resources. In this work, we report a novel encoder-decoder method for single-pixel imaging, which aims at enhancing imaging quality from extremely low measurement amounts. First, we encode the high-dimensional target information into one-dimensional measurements using globally optimized modulation patterns, implemented by a fully connected or convolutional layer. Second, we integrate a U-Net neural network with an advanced multi-head self-attention mechanism and a pyramid pooling module to decode the measurements and reconstruct high-fidelity images. Under such a strategy, the skip connections within the U-Net structure enhance the preservation of fine image features, and the incorporation of the multi-head self-attention mechanism and pyramid pooling module effectively captures contextual dependencies among low-dimensional measurements, thereby extracting significant image features and enhancing reconstruction quality. The simulation results conducted on the STL-10 dataset validate the efficiency of the reported technique. With a resolution of 96 × 96 pixels and an ultra-low sampling rate of 1%, we consistently achieved the highest image fidelity compared to traditional single-pixel reconstruction methods for both grayscale and color images.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.