Publisher’s Note: This paper, originally published on 5 October 2015, was withdrawn per author request, if you have any questions please contact SPIE Digital Library Customer Service for assistance.
Lyotropic Liquid Crystals (LCs) are attractive materials as host systems for nanoparticles, in particular for carbon nanotubes (CNTs), due to the LC templating and dispersing action. Since carbon nanotubes have many remarkable properties their presence could also influence the aligning hosts and such effects need to be taken into account in CNTLC composites. CNTs can be dispersed efficiently in surfactant-based lyotropic hosts that can be removed after their templating action, being water based. However, residual surfactant has a detrimental effect on the nanotube properties and it becomes important to find ways to minimize its amount in CNT composites. In the present work we use, for CNT alignment, a lyotropic nematic LC host with a very low surfactant concentration, based on charge combination of cationic and anionic surfactant molecules. Small variations in the molar ratio of the two surfactants, still at a fixed total surfactant amount, yield a very different LC behavior. CNTs could be successfully dispersed in the host forming an overall low-surfactant composite. Interestingly, the presence of nanotubes strongly influences the behavior of the host, bringing a stabilization of the LC phase.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.