Extreme UV (EUV) lithography is entering full-scale production of high-end IC chips. This transition gives researchers in academia and industry ample motivation to propose new chemistries that will contribute to alleviating the resolution-line edge roughness-sensitivity trade-off dilemma of EUV lithography. We also have a great interest in the radical chemistry of carbon-fluorine bonds working under EUV and have explored its applicability as a platform for implementing novel EUV resists. While it was checked that the chemical concept is viable by using fluorinated small molecules and polymers, it needed to be upgraded in terms of patterning resolution and sensitivity. Recently, we extended successfully the radical-based strategy to the tin-oxo nano cluster resist concept. Soluble fluorinated tin-oxo clusters could be prepared, and they were cast into thin films from a fluorous solution. When the thin film was exposed to EUV radiation, it lost solubility, resulting in the formation of negative-tone images. Under an EUV lithographic condition, the thin film could be tailored down to 10 nm or smaller sized features. In addition, their unique solubility in chemically orthogonal solvents also enabled the build-up of a bilayer structure composed of a non-fluorinated reactive polymer underlayer without curing. The stacked film structure was found to be helpful for the sensitivity improvement. These results propose another interesting EUV resist candidate possessing unique capabilities in thin film processing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.