The Direct Detection Spectrometer Instrument (DDSI) is one of two instruments designed for the Far-IR Spectroscopy Space Telescope (FIRSST) recently proposed to NASA in response to the Astrophysics Probe Explorer call. The DDSI consists of two modules: HR delivering spectra at R~20,000 to 100,000 in three select bands (HR1-3) across 56-184μm, and LR providing broadband spectral coverage at R~100 in four bands (LR1-4) across 35-260 µm. The dispersive element of the HR bands is a compact optical resonator known as a virtually imaged phase array. All DDSI bands use microwave kinetic inductance detector (MKID) arrays cooled to 120mK. The total DDSI MKID pixel count is 2612 pixels.
As the next generation of Earth science programs demand more spectral bands, larger fields of view, faster speeds and reduced size, the optical designer will need to adapt to these new requirements. With the advent of manufacturable freeform optical surfaces, compact high-performance optical systems utilizing these surfaces are becoming practical. Freeform optics provide additional degrees of freedom for the optical designer which allow for more compact optical systems of equal performance, potentially operating at faster speeds or over wider fields of view. While numerous design studies on freeform systems have been published, little has been presented in the open literature on as built freeform systems. In this paper we describe the successful outcome of a hardware development program where we designed, built, aligned, and tested a compact WFOV three-mirror telescope with freeform surfaces. It is important that in addition to good optical performance, excellent stray light control is required in Earth remote sensing systems to minimum calibration errors across spectral bands. While compact size is often emphasized in the design of freeform systems, this needs to be balanced against the requirement for good stray light control. As such, the telescope presented in this paper balances the desire for small size with good stray light control. We present the results of the computer-aided alignment of the telescope along with measured stray light performance.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.