KEYWORDS: Sensors, Near infrared spectroscopy, Muscles, In vivo imaging, Education and training, Oxygenation, Tissues, Oxygen, Accuracy assessment, Reproducibility
Athletes can optimize training performance by measuring the oxygenation level in their muscles using Near-infrared spectroscopy (NIRS). NIRS allows athletes to measure local muscle oxygenation changes and assess performance indicators such as optimal pace or intensity during endurance activities and optimal recovery in endurance and strength activities. A novel NIRS sensor (Train.Red FYER) was developed to enable these measurements. In this this study the stability, accuracy, intra- and inter-variability of muscle oxygenation saturation (SmO2) in 10 sensors using two different phantoms and in-vivo tests, were SmO2 was defined as the percentage of the ratio of oxygenated to total hemoglobin. Stability of three sensors was tested during 3 hours on each phantom. Intra-variability of three sensors was assessed on four different days by two different operators by repositioning the sensor over the same location on both phantoms and on the forearm during resting position. Intra-variability was also assessed during vascular occlusion tests (VOT). Intervariability was assessed between 10 sensors on both phantoms on four different days. For analysis coefficient of variance (CV) was calculated. The sensor showed to be stable on both phantoms (<1% SmO2). Precision tests showed a larger inter-variability (<2% SmO2) than intra-variability (<1% SmO2). Inter-day and inter-operator variability on phantoms were also small (<4% SmO2). In vivo tests on the forearm and VOT showed higher variability (<5% SmO2) than on phantoms. It was shown a stable and precise NIRS sensor for the measurement of SmO2.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.