This paper presents a neuron implementation based on floating-gate MOSFET (FG-MOS) structure. The computation is performed by charge distribution at the input of FG-MOS inverter determining the cell state. There is no current-flow through the interconnections after processing is completed, thus a significant reduction in DC power consumption can be achieved. Such neuron can be used to build a capacitively coupled cellular neural/nonlinear network (CNN) for processing black and white (B/W) images. Although the coupling coefficients are basically implemented with capacitances, this approach provides them with 1-bit programmability. Also the neuron's threshold level can be digitally programmed to four different values. The templates operating on the B/W images can be modified to have only binary-valued {0,1} terms or can be split into such (sequentially run) simple subtasks. Therefore, the presented neuron structure is able to perform the evaluation of almost all B/W templates proposed so far. Exploration of FG-MOS structures can help to understand the implementation problems of capacitively coupled CNNs. Such a situation appears, e.g., in nanoelectronic CNNs composed of single-electron tunneling (SET) transistors, which also deal with B/W images only. Moreover, the binary programmability approach utilized here should help to develop an effective programming scheme for future SET or CMOS-SET hybrid CNN implementations. Along with the neuron structure, its operation description and simulation results of the 8 x 8 network are presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.