Concepts are presented for using negative refractive index (NRI) materials to design parabolic reflector telescopes and antennas with resolutions significantly better than the diffractions limit. The main question we are attempting to answer is can negative refractive material be used to improve performance of parabolic systems even when the signal or light source is far away and no evanescent fields are present when they arrive at the parabolic reflector. The main approach is to take advantage of any knowledge that we have to recreate the evanescent fields. Fields are then adapted to improve a performance measure such a sharper focus or antenna rejection of interference. A negative refraction index lens is placed between the conventional reflector and focal plane to shape the point spread function. To produce telescope resolutions that are better than the diffraction limit, evanescent fields created by the reflection off of the parabolic surface are amplified and modified to generate fields that sharpen the focus. A second approach use available knowledge of an emitting aperture to synthesize a field at a distance that matches as closely as possible the field of the emitting aperture. The yet unproven conclusion is that techniques can be developed that will improve antenna and telescopes resolution that is better than the diffraction limit.
Conference Committee Involvement (1)
Optical Modeling and Performance Predictions III
29 August 2007 | San Diego, California, United States
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.