We describe two studies that examine how the enhancement and suppression of the solubility of a 193-nm positive-tone photoresist can be manipulated using crosslinking, thermal-activation and variable-temperature bakes. In our first study, we describe the development of a thin, polymeric film that can transition through three solubility regimes as a response to increasing bake temperatures: (1) low temperature, developer insoluble; (2) medium temperature, developer soluble; (3) high temperature, developer insoluble.
We describe an exploration of small molecules capable of suppressing the solubility of polymers with pendent carboxylic acid groups. We evaluate the use of small molecules such as alkyl amines, benzyl bromide, N,N’-dicyclohexylcarbodiimide (DCC) and N,N-diisopropylcarbodiimide (DIC). We have combined polymers containing carboxylic acids with these reagents and evaluated their changes in dissolution rate in n-butyl acetate and 0.26 N TMAH. We have also conducted model reactions of non-polymeric carboxylic acids in NMR tubes to help characterize the reactions occurring with polymers.
The acid-catalyzed cleavage of carbon-oxygen bonds is one of the most critical reaction occurring during image formation using chemically-amplified photoresists. Described here is an approach to modelling these important reactions using Spartan'18 software. This modelling predicts the activation energies of catalyzed and uncatalyzed C-O bond breaking reactions for over fifty acetate esters. To verify the capabilities of this modelling approach, we compared the modelled predictions of activation energies against experimental values for hydride ion affinity values for forty carbocations. Using similar modelling techniques, we predicted the activation energies of C-O bond breaking of commonly used 193-nm monomers as catalyzed by perfluorobutanesulfonic (PFBuS) acid. Additionally, we evaluated the effect of carboxylic acid size and the effect of increasing alkyl substitution on the carbocation intermediate.
This paper describes the photoreactivity of six organometallic complexes of the type PhnMX2 containing bismuth, antimony and tellurium, where n = 3 for bismuth and antimony and n = 2 for tellurium, and where X = acetate (O2CCH3) or pivalate (O2CC(CH3)3). These compounds were exposed to EUV light to monitor photodecomposition via in situ mass spectral analysis of the primary outgassing products of CO2, benzene and phenol. This paper explores the effect of metal center and carboxylate ligand on the EUV reactivity of these EUV photoresists.
We have investigated the mechanism of photodecomposition of antimony carboxylate complexes of the type Ph3Sb(O2CR′)2 by means of EUV outgassing in combination with isotopic labelling. A series of photoresists were examined to determine the mechanistic pathways by which volatile photoproducts are generated during EUV exposure. A primary volatile photoproduct from triphenylantimony complexes is benzene. However, the source of hydrogen needed to convert the phenyl groups to benzene (Ph-H) is not obvious. We concluded that the primary source of hydrogen to create benzene is external to the film. Additionally, we have prepared isotopically-labelled versions of Ph3Sb(O2CCH(CH3)2)2 in which the hydrogens in the isobutyrate ligand were replaced with 0, 1, 6 and 7 deuteriums, to provide information about the relative reactivity of these protons during EUV exposure as analyzed by mass spectrometry. High reaction selectivity was identified within the carboxylate dictated by hydrogen location relative to the carbonyl for both benzene and phenol generation. Lastly, the results of these studies were used to propose a series of reaction pathways to generate the aforementioned reaction byproducts.
We have developed a method to study the photomechanism of our antimony carboxylate platform R3Sb(COOR')2. A series of mechanistic studies followed the production of reaction byproducts by mass spectrometer, as they left the film during exposure to EUV photons and 80 eV electrons. We identified several prominent outgassing fragments and their rates of production as a function of ligand structure. The degree of outgassing appears to be well-correlated with the bond dissociation energy of the carboxylate ligand R’ group. Furthermore, a deuterium labeling study was conducted to determine from which ligand hydrogen is abstracted to form benzene and phenol during exposure. Benzene and phenol were found to abstract hydrogen from opposing sites within the film, and with greater than 95% isotopic purity. Using the results of the outgassing studies alongside established mechanisms for electron-induced reactions; a series of reaction pathways were proposed to generate the aforementioned outgassing species and a possible nonvolatile negative-tone photoproduct.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.