DNA-directed assembly of gold nanoparticles into precise two- and three-dimensional patterns has enabled bold advances in probing their optical properties such as the local enhancement in their surface plasmon resonance. DNA nanostructures synthesized using the principles of DNA origami have been programmed to contain unique capture sites for positioning metal nanoparticles in diverse geometries for applications in biosensing, therapy, and miniature electronics. However, to enable scalability beyond simple 2-3 nanoparticle architectures, it is important to understand the requirement for orthogonal capture sequences for attaching more than a single gold nanoparticle on a DNA nanostructure. In this work, we sought to assemble an angular gold nanorod-nanosphere-nanorod pattern on a DNA origami triangle with multiple capture sites utilizing a common capture sequence. Results indicate that gold nanospheres preferentially bound to all the capture sites on the DNA origami triangle and prevented attachment of gold nanorods. This suggests that requirement for orthogonal capture sites is correlated with the physical properties of the individual nanoparticle such as shape and size.
A nanoparticle (NP) doping technique was used for making erbium-doped fibers (EDFs) for high energy lasers. The nanoparticles were doped into the silica soot of preforms, which were drawn into fibers. The Er luminescence lifetimes of the NP-doped cores are longer than those of corresponding solution-doped silica, and substantially less Al is incorporated into the NP-doped cores. Optical-to-optical slope efficiencies of greater than 71% have been measured. Initial investigations of stimulated Brillouin scattering (SBS) have indicated that SBS suppression is achieved by NP doping, where we observed a low intrinsic Brillouin gain coefficient, of ~1× 10-11 m/W and the Brillouin bandwidth was increased by 2.5x compared to fused silica.
Nanoparticle (NP) doping is a new technique for making erbium-doped fibers (EDFs); the Er ions are surrounded by a
cage of aluminum and oxygen ions, substantially reducing Er3+ ion-ion energy exchange and its deleterious effects on
laser performance. Er-Al-doped NPs have been synthesized and doped in-situ into the silica soot of the preform core. We
report the first known measurements of NP-doped EDFs in a resonantly-core pumped master oscillator-power amplifier
(MOPA) configuration; the optical-to-optical slope efficiency was 80.4%, which we believe is a record for this type of
fiber.
In this paper we present our recent research results in synthesizing various metal oxide nanoparticles for use as laser gain media (solid state as well as fiber lasers) and transparent ceramic windows via two separate techniques, co-precipitation and flame spray pyrolysis. The nanoparticles were pressed into ceramic discs that exhibited optical transmission approaching the theoretical limit and showed very high optical-to-optical lasing slope efficiency. We have also synthesized sesquioxide nanoparticles using a Flame Spray Pyrolysis (FSP) technique that leads to the synthesis of a metastable phase of sesquioxide which allows fabricating excellent optical quality transparent windows with very fine grain sizes. Finally, we present our research in the synthesis of rare earth doped boehmite nanoparticles where the rareearth ion is encased in a cage of aluminum and oxygen to prevent ion-ion proximity and energy transfer. The preforms have been drawn into fibers exhibiting long lifetimes and high laser efficiencies.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.