Hyperspectral Imaging has been accepted for ocean color measurements from both airborne platforms and space-based instruments but has yet to be implemented with the desired ground resolution, coverage, revisit rate, and Signal to Noise Ratio (SNR) for coastal observations of biological processes. The low albedo and high levels of atmospheric scattering drives the need for 1000:1 SNR ocean color data, while harmful algal blooms or post-extreme weather events require daily revisit rates. To achieve higher SNR, Low-Earth Orbit (LEO) sensors must make the trade-off of aperture size and spatial resolution versus spacecraft size and complexity. Airborne missions can achieve the high SNR and spatial resolution needed but lack in coverage and revisit rates. Recent flights of the NASA ER-2 and stratospheric solar planes have suggested an opportunity for regional coastal hyperspectral imaging with multi-week observations, rapid revisit times, and low frame rates for high SNR. Stratospheric platforms, also known as High-Altitude Pseudo Satellites (HAPS), can fill this gap but have limited payload size, weight, and power (SWaP.) We present an example payload that fits within these limitations, the Compact Hyperspectral Advanced Imager (CHAI) for ocean color measurements. A solar plane HAPS UAV platform with a CHAI payload is compared against the baseline NASA HySPIRI LEO mission and the NASA AVIRIS-NG airborne system. Hyperspectral imaging is only one of the technologies needed for better understanding of the coastal environment. Other low SWaP coastal imaging payloads are discussed for applications including Solar Induced Fluorescence (SIF), Evapotranspiration (ET), and Methane Gas Imaging. For Earth Science applications such as coastal remote sensing, a HAPS platform with a suite of small sensors may be the optimal system for regional studies.
CIRCE is a near-infrared (1-2.5 micron) imager (including low-resolution spectroscopy and polarimetery) in operation as a visitor instrument on the Gran Telescopio Canarias 10.-4m tele scope. It was built largely by graduate students and postdocs, with help from the UF Astronomy engineering group, and is funded by the University of Florida and the U.S. National Science Foundation. CIRCE is helping to fill the gap in time between GTC first light and the arrival of EMIR, and will also provide the following scientific capabilities to compliment EMIR after its arrival: high-resolution imaging, narrowband imaging, high-time-resolution photometry, polarimetry, and low-resolution spectroscopy. There are already scientific results from CIRCE, some of which we will review. Additionally, we will go over the observing modes of CIRCE, including the two additional modes that were added during a service and upgrading run in March 2016.
We report on the design, on-sky performance, and status of the FLAMINGOS-2 instrument – the fully-cryogenic facility
near-infrared imager and multi-object spectrograph for the Gemini 8-meter telescopes. FLAMINGOS-2 has a refractive
all-spherical optical system providing 0.18-arcsecond pixels and a 6.2-arcminute circular field-of-view on a 2048x2048-
pixel HAWAII-2 0.9-2.4 μm detector array. A slit/decker wheel mechanism allows the selection of up to 9 multi-object
laser-machined plates or 3 long slits for spectroscopy over a 6x2-arcminute field of view, and selectable grisms provide
resolutions from ~1300 to ~3000 over the entire spectrograph bandpass. FLAMINGOS-2 is also compatible with the
Gemini Multi-Conjugate Adaptive Optics system, providing multi-object spectroscopic capabilities over a 3x1-arcminute
field with high spatial resolution (0.09-arcsec/pixel). We review the designs of optical, mechanical, electronics,
software, and On-Instrument WaveFront Sensor subsystems. We also present the on-sky performance measured during
acceptance testing in 2009, as well as current status of the project and future plans.
CanariCam is the facility multi-mode mid-IR camera developed by the University of Florida for the 10-meter Gran
Telescopio Canarias (GTC) on La Palma. CanariCam has four science modes that provide the GTC community with an
especially powerful research tool for imaging, grating spectroscopy, coronagraphy, and dual-beam polarimetry.
Instrument commissioning in the laboratory at the University of Florida indicates that all modes perform as required, and
the next step is on-telescope commissioning. After commenting on the instrument status, we will review key features of
each of these science modes, with emphasis on illustrating each mode with science examples that put the system
performance, particularly the anticipated sensitivity, into perspective.
We present the current status of the Canarias InfraRed Camera Experiment (CIRCE) an all-reflective near-IR,
imager, spectrograph, and polarimeter for the 10.4-meter Gran Telescopio Canarias (GTC). In particular, we
review the progress of the opto- and cryo- mechanical design and manufacture, focusing on the custom filter,
lyot, and grism wheels, lightweight optics, and mirror brackets. We also outline our progress with the optical
bench. Finally, we discuss a number of CIRCE's features that both complement and augment the planned suite
of GTC facility instruments.
The Flamingos-2 Tandem Tunable filter is a tunable, narrow-band filter, consisting of two Fabry-Perot etalons in series,
capable of scanning to any wavelength from 0.95 to 1.35 microns with a spectral resolution of R~800. It is an accessory
mode instrument for the near-IR Flamingos-2 imaging-spectrograph designed for the Gemini South 8m Observatory and
will be fed through the upcoming Multi-Conjugate Adaptive Optics feed. The primary science goal of the F2T2 filter is
to perform a ground-based search for the first star forming regions in the universe at redshifts of 7 < z < 11. The
construction of the F2T2 filter is complete and it is currently in its calibration and commissioning phases. In this
proceeding, we describe the calibration and performance of the instrument.
CanariCam is the facility multi-mode mid-IR camera developed by the University of Florida (UF) for the 10.4-
meter Gran Telescopio Canarias (GTC). CanariCam contains a 320 × 240-pixel Raytheon array, which will
Nyquist-sample the diffraction-limited point-spread-function at wavelengths longer than 8 microns, yielding a
field of view of 26"×19". In Aug. 2007, the University of Florida instrument team held a successful Acceptance
Testing (AT) of CanariCam. We describe key performance requirements, and compare these to the actual performance
during formal AT. Among the results considered are detector noise characteristics, image quality, and
throughput. We focus particularly on the unique dual-beam polarimetric modes. We have demonstrated that
with a half-wave plate, it achieves or exceeds the design goals for imaging both polarization planes simultaneously.
FLAMINGOS-2 is a near-infrared wide-field imager and fully cryogenic multi-object spectrometer for Gemini
Observatory being built by the University of Florida. FLAMINGOS-2 can simultaneously carry 9 custom cryogenic
multi-object slit masks exchangeable without thermally cycling the entire instrument. Three selectable grisms provide
resolving powers which are ~1300 to ~3000 over the entire spectrograph bandpass of 0.9-2.5 microns. We present and
discuss characterization data for FLAMINGOS-2 including imaging throughput, image quality, spectral performance,
and noise performance. After a lengthy integration process, we expect that FLAMINGOS-2 will be in the midst of
commissioning at Gemini South by the fall of 2008.
We report on the design and status of the FLAMINGOS-2 instrument - a fully-cryogenic facility near-infrared imager
and multi-object spectrograph for the Gemini 8-meter telescopes. FLAMINGOS-2 has a refractive all-spherical optical
system providing 0.18-arcsecond pixels and a 6.2-arcminute circular field-of-view on a 2048×2048-pixel HAWAII-2
0.9-2.4 μm detector array. A slit/decker wheel mechanism allows the selection of up to 9 multi-object laser-machined
plates or 3 long slits for spectroscopy over a 6×2-arcminute field of view, and selectable grisms provide resolutions from
~1300 to ~3000 over the entire spectrograph bandpass. FLAMINGOS-2 is also compatible with the Gemini Multi-
Conjugate Adaptive Optics system, providing multi-object spectroscopic capabilities over a 3×1-arcminute field with
high spatial resolution (0.09-arcsec/pixel). We review the designs of optical, mechanical, electronics, software, and On-
Instrument WaveFront Sensor subsystems. We also present the current status of the project and future plans, including
on-sky delivery planned for late 2008.
We report on the design status of the Canarias InfraRed Camera Experiment (CIRCE), a near-infrared visitor
instrument for the 10.4 meter Gran Telescopio Canarias (GTC). In addition to functioning as a 1-2.5 micron
imager, CIRCE will have the capacity for narrow-band imaging, low-and moderate- resolution grism spectroscopy,
and imaging polarimetry. CIRCE's all-reflective aspheric optical design offers excellent throughput and
image quality. We present an analysis of the optical layout and the progress of the opto-mechanical design and
manufacture.
We report on the design, fabrication, and on-sky performance of the Florida Image Slicer for Infrared Cosmology and Astrophysics (FISICA) - a fully-cryogenic all-reflective image-slicing integral field unit for the FLAMINGOS near-infrared spectrograph. Designed to accept input beams near f/15, FISICA with FLAMINGOS provides R~1300 spectra over a 16x33-arcsec field-of-view on the Cassegrain f/15 focus of the KPNO 4-meter telescope, or a 6x12-arcsec field-of-view on the Nasmyth or Bent Cassegrain foci of the Gran Telescopio Canarias 10.4-meter telescope. FISICA accomplishes this using three sets of "monolithic" powered mirror arrays, each with 22 mirrored surfaces cut into a single piece of aluminum. We review the optical and opto-mechanical design and fabrication of FISICA, as well as laboratory test results for FISICA integrated with the FLAMINGOS instrument. Finally, we present performance results from observations with FISICA at the KPNO 4-m telescope and comparisons of FISICA performance to other available IFUs on 4-m to 8-m-class telescopes.
We report on the design and status of the FLAMINGOS-2 instrument - a fully-cryogenic facility near-infrared imager
and multi-object spectrograph for the Gemini 8-meter telescopes. FLAMINGOS-2 has a refractive all-spherical optical
system providing 0.18-arcsecond pixels and a 6.2-arcminute circular field-of-view on a 2048×2048-pixel HAWAII-2
0.9-2.4 μm detector array. A slit/decker wheel mechanism allows the selection of up to 9 multi-object laser-machined
plates or 3 long slits for spectroscopy over a 6×2-arcminute field of view, and selectable grisms provide resolutions from
~1300 to ~3000 over the entire spectrograph bandpass. FLAMINGOS-2 is also compatible with the Gemini Multi-
Conjugate Adaptive Optics system, providing multi-object spectroscopic capabilities over a 3×1-arcminute field with
high spatial resolution (0.09-arcsec/pixel). We review the designs of optical, mechanical, electronics, software, and On-
Instrument WaveFront Sensor subsystems. We also present the current status of the project, currently in final testing in
mid-2006.
We present an overview of the near-InfraRed Multi-Object Spectrograph (IRMOS) for the Thirty Meter Telescope, as developed under a Feasibility Study at the University of Florida and Herzberg Institute of Astrophysics. IRMOS incorporates a multi-object adaptive optics correction capability over a 5-arcminute field of regard on TMT. Up to 20 independently-selectable target fields-of-view with ~2-arcsec diameter can be accessed within this field simultaneously. IRMOS provides near-diffraction-limited integral field spectroscopy over the 0.8-2.5 μm bandpass at R~1,000-20,000 for each target field. We give a brief summary of the Design Reference science cases for IRMOS. We then present an overview of the IRMOS baseline instrument design.
KEYWORDS: Fabry–Perot interferometers, Gemini Observatory, Spectral resolution, Calibration, Space telescopes, Telescopes, Control systems, Electronics, Device simulation, Digital signal processing
COM DEV Ltd. is building a tandem tunable Fabry-Perot etalon to be mounted inside the Flamingos-2 imaging spectrograph on the Gemini South Telescope. The Flamingos-2 Tandem Tunable Filter has a target spectral resolution of R~800 and a clear aperture of 60 mm, and will be fed by the telescope's Multi-Conjugate Adaptive Optics system. The system is designed to undertake ultra-deep searches for "First-Light" sources at redshifts of z = 7-10 using foreground gravitational lensing. This paper describes preliminary characterization and expected performance F2T2.
We report on the design and status of the Florida Image Slicer for Infrared Cosmology and Astrophysics (FISICA) - a fully-cryogenic all-reflective image-slicing integral field unit for the FLAMINGOS near-infrared spectrograph. Designed to accept input beams near f/15, FISICA with FLAMINGOS provides R~1300 spectra over a 16x33-arcsec field-of-view on the Cassegrain f/15 focus of the KPNO 4-meter telescope, or a 6x12-arcsec field-of-view on the Nasmyth or Bent Cassegrain foci of the Gran Telescopio Canarias 10.4-meter telescope. FISICA accomplishes this using three sets of “monolithic” powered mirror arrays, each with 22 mirrored surfaces cut into a single piece of aluminum. We review the optical and opto-mechanical design and fabrication of FISICA, as well as laboratory test results for FISICA integrated with the FLAMINGOS instrument. We also discuss plans for first-light observations on the KPNO 4-meter telescope in July 2004.
We report on the design status of the Canarias InfraRed Camera Experiment (CIRCE), a near-infrared visitor instrument for the 10.4-meter Gran Telescopio Canarias (GTC). Besides functioning as a 1-2.5 micron imager, CIRCE will have the capacity for narrow-band imaging, low- and moderate- resolution grism spectroscopy, and imaging polarimetry. Other design features include fully cryogenic filter, slit, and grism wheels, high-speed photometry modes, and broad-band imaging in J, H, and Ks filters. We anticipate that a myriad of scientific projects will benefit from CIRCE's unique combination of capabilities.
We discuss the design, fabrication, assembly, and testing of the prototype Florida Image Slicer for Infrared Cosmology and Astrophysics (FISICA) Integral Field Unit (IFU). FISICA is intended for large telescopes with f/numbers close to f/15, such as the KPNO 4-m and GTC 10.4-m telescopes. It implements an image slicing approach, wherein the initial image plane is optically sliced into thin strips and the strips are optically rearranged end-to-end, whereupon the composite slit image is fed into a conventional spectrograph. We divide the field of view into 22 slices, while accommodating the entire f/15 viewing solid angle. The all-reflective instrument resides in a cryogenic dewar at the initial focal plane, and places the composite slit image output precisely at the initial focus, allowing it to interface to the existing FLAMINGOS spectrograph. The mirrors were diamond turned using various tool geometries and state-of-the-art, multi-axis tool control. The mirrors are made from a single billet of aluminum, and the optical bench and mounts are made of the same alloy as the mirrors for optimum performance during cryogenic cooling. We discuss the key design efforts, emphasizing tradeoffs among performance, volume, fabrication difficulty, and alignment requirements. We describe the fabrication, and present preliminary laboratory test results.
We report on the design and status of the FLAMINGOS-2 instrument - a fully-cryogenic facility near-infrared imager and multi-object spectrograph for the Gemini 8-meter telescopes. FLAMINGOS-2 has a refractive all-spherical optical system providing 0.18-arcsecond pixels and a 6.2-arcminute circular field-of-view on a 2048x2048-pixel HAWAII-2 0.9-2.4 mm detector array. A slit/Dekker wheel mechanism allows the selection of up to 9 multi-object laser-machined plates or 3 long slits for spectroscopy over a 6x2-arcminute field of view, and selectable grisms provide resolutions from ~1300 to ~3000 over the entire spectrograph bandpass. FLAMINGOS-2 is also compatible with the Gemini Multi-Conjugate Adaptive Optics system, providing multi-object spectroscopic capabilities over a 3x1-arcminute field with high spatial resolution (0.09-arcsec/pixel). We review the designs of optical, mechanical, electronics, software, and On-Instrument WaveFront Sensor subsystems. We also present the current status of the project, midway through its construction phase in June 2004.
The University of Florida is developing a mid-infrared camera for the 10.4-meter Gran Telescopio CANARIAS. CanariCam has four science modes and two engineering modes, which use the same 320 x 240-pixel, arsenic-doped silicon, blocked-impurity-band detector from Raytheon. Each mode can be remotely selected quickly during an observing sequence. The pixel scale is 0.08 arcsec, resulting in Nyquist sampling of the diffraction-limited point-spread-function at 8 μm, the shortest wavelength for which CanariCam is optimized. The total available field of view for imaging is 26 arcsec x 19 arcsec. The primary science mode will be diffraction-limited imaging using one of several available spectral filters in the 10 μm (8-14 μm) and 20 μm (16-25 μm) atmospheric windows. Any one of four plane gratings can be inserted for low and moderate-resolution (R = 100 - 1300) slit spectroscopy in the 10 and 20-μm regions. Insertion of appropriate field and pupil stops converts the camera into a coronagraph, while insertion of an internal rotating half-wave plate, a field mask, and a Wollaston prism converts the camera into a dual-beam polarimeter.
We report on the performance of FLAMINGOS, the world's first fully cryogenic near-IR multi-object spectrometer. FLAMINGOS has a fast all refractive optical system, which can be used at telescopes slower than f/7.5. This makes FLAMINGOS a very efficient wide-field imager when used on fast small aperture telescopes and a high AW spectrometer using laser machined aperture masks for MOS spectroscopy. FLAMINGOS uses a 2048x2048 HgCdTe HAWAII-2 array by the Rockwell Science Center. The array is readout through 32 amplifiers, which results in low overheads for observations. We describe both the operating characteristics of the HAWAII-2 array and of the array controller and data acquisition system. FLAMINGOS has been in operation for about 1.5 years and is now in routine use on four telescopes: The Kitt Peak 4-m and 2.1-m, The 6.5-m MMT and the 8-m Gemini South Telescope. We will describe the operating characteristics of FLAMINGOS on each of these telescopes that deliver fields-of-view from 21x21 arcminutes to 2.7x2.7 arcminutes and pixels from 0.6 arcseconds to 0.08 arcseconds. While providing a large AW product for fast telescopes (i.e. f/8), FLAMINGOS becomes progressively less efficient on slower telescopes. Since nearly all large telescopes have fairly slow optical systems (f/12 or slower) the combination of large aperture and slow optical systems makes FLAMINGOS ill suited for optimal performance on current large aperture telescopes. Thus, we are beginning construction of FLAMINGOS-2, which will be optimized for performance on the f/16 Gemini South 8-m telescope. Similar to FLAMINGOS, FLAMINGOS-2 will be fully refractive using grisms, laser machined aperture masks and a 2048x2048 HgCdTe HAWAII-2 array. FLAMINGOS-2 will provide a 6.1 arcminute field-of-view with 0.18 arcsecond pixels. FLAMINGOS-2 will also be designed to except an f/32 beam from the Gemini South MCAO system.
KEYWORDS: Sensors, Staring arrays, Spectrographs, Calibration, Land mines, Hyperspectral imaging, Imaging systems, Long wavelength infrared, Digital signal processing, Infrared imaging
The AHI (Airborne Hyperspectral Imager) system was designed to detect the presence of buried land mines from the air through detection of along wave IR observable associated with mine installation. The system is a helicopter-borne LWIR hyperspectral imager with real time on-board radiometric calibration and mine detection. It collects hyperspectral imagery from 7.5 to 11.5 μm in either 256 or 32 spectral bands. At all wavelengths the AHI noise equivalent delta (NEΔT) temperature is less than 0.1K at 300K and the NESR is less than .02 watts/m2-sr-μm.
The University of Florida is developing the mid-IR imager, called GatirCam, to be used primarily, but not solely, at the southern hemisphere Gemini telescope at Cerro Pachon, Chile. Key features of GatirCam are its fully reflective optics, its very high mechanical rigidity, and the fact that the associated electronics are very similar to those is in use successfully on similar instrumentation. Design studies for GatirCam indicate that it will meet or exceed all critical requirements of image quality and performance. A low-resolution spectroscopic mode is also currently under consideration for implementation in GatirCam.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.