This will count as one of your downloads.
You will have access to both the presentation and article (if available).
There are several example technologies from the IOS that are already making the transition to astronomical AO systems. The first is that the real time controller based on Direct Memory Access transfer between the WFS camera link frame-grabber and a DSP board is being reused on the upgrade to PALM-3000 AO system at Palomar Observatory. This enables the system to minimize latency by bypassing the CPU and its inherent timing jitter. Technologies like this will be crucial to enabling high contrast imaging on the next generation of extremely large telescopes. In addition, the IOS measures Fried’s parameter from wavefraont measures in near real time. This technology has already been deployed to PALM-3000. The main function of Laser Communication AO systems is to couple the incoming light into single mode fiber. This is the same configuration that will be used by AO coupled radial velocity spectrographs.
The adaptive optics system is a woofer/tweeter design, with one deformable mirror correcting for low spatial frequencies with large amplitude and a second deformable mirror correcting for high spatial frequencies with small amplitude. The system uses a Shack-Hartmann wavefront sensor. The system has achieved first light and is undergoing commissioning. We will present an overview of the system design and initial performance.
View contact details
No SPIE Account? Create one