We report development of a new kind of micro-optical waveguide based on liquid core in a V-groove glass and air cladding and a similar finite element method was constructed to investigate the guiding properties such as mode distribution and modal birefringence. Through the detailed modeling, we investigate the role of each parameter such as, refractive index of core and diameter of core of V-groove structure. This work demonstrates numerically and experimentally high birefringence in this optical waveguide and different aspects of the fiber properties related to the fundamental mode and fiber birefringence are revealed. As a result, wave-guide with large birefringence is identified for opening angle of 40 degree and refractive index of 1.472.
The civil engineering community is becoming increasingly interested in monitoring structural behavior of civil infrastructure and in evaluation of the structural performance. The demand has largely been driven by deficiencies in structural performance due to the aging of the infrastructure, excessive loading, and natural disasters such as an earthquake, a landslide, a typhoon and a tsunami. In this study, a structural health monitoring methodology using acceleration responses is proposed for damage detection of a three-story prototype building structure during shaking table testing. A damage index is developed using the acceleration data and applied to outlier analysis, one of unsupervised learning based pattern recognition methods. A threshold value for the outlier analysis is determined based on confidence level of the probabilistic distribution of the acceleration data. The probabilistic distribution is selected according to the feature of the collected data.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.