Retinal detachment (RD) refers to the separation of the retinal neuroepithelium layer (RNE) and retinal pigment epithelium (RPE), and retinoschisis (RS) is characterized by the RNE splitting into multiple layers. Retinal detachment and retinoschisis are the main complications leading to vision loss in high myopia. Optical coherence tomography (OCT) is the main imaging method for observing retinal detachment and retinoschisis. This paper proposes a U-shaped convolutional neural network with a cross-fusion global feature module (CFCNN) to achieve automatic segmentation of retinal detachment and retinoschisis. Main contributions include: (1) A new cross-fusion global feature module (CFGF) is proposed. (2) The residual block is integrated into the encoder of the U-Net network to enhance the extraction of semantic information. The method was tested on a dataset consisting of 540 OCT B-scans. With the proposed CFCNN method, the mean Dice similarity coefficient of retinal detachment and retinoschisis segmentation reached 94.33% and 90.29% and were better than some existing advanced segmentation networks.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.