Soil moisture has long been recognized as one of the critical land surface initial conditions for numerical weather, climate hydrological predictions, particularly for transition zones between dry and humid climates. However, none of the currently existing soil moisture products has been used operationally in these models because of their consistency and reliability issues. A consistent and qualitatively reliable global soil moisture product is thus in desire to make good use of observations from different microwave sensors, such as AMSR-E, WindSat and TMI. This study explores the potential of WindSat data for producing such a product using the single channel algorithm (SCA) for soil moisture retrieval in conjunction with field observations for calibrating the algorithm and for validation. The preliminary results show good agreement between the results from WindSat and NASA AMSR-E product both in terms of spatial pattern
and magnitude. The validation results show that the differences between the retrieved soil moisture from WindSat data and the ground measurements are below 0.05 (vol/vol) in most cases, meaning a great potential of WindSat data for producing a blended product. Further cross calibration between the brightness temperatures from different sensors might be needed for producing such a blended product.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.