This study introduces a practical approach to implement real-time signal processing algorithms for general surveillance radar based on NVIDIA graphical processing units (GPUs). The pulse compression algorithms are implemented using compute unified device architecture (CUDA) libraries such as CUDA basic linear algebra subroutines and CUDA fast Fourier transform library, which are adopted from open source libraries and optimized for the NVIDIA GPUs. For more advanced, adaptive processing algorithms such as adaptive pulse compression, customized kernel optimization is needed and investigated. A statistical optimization approach is developed for this purpose without needing much knowledge of the physical configurations of the kernels. It was found that the kernel optimization approach can significantly improve the performance. Benchmark performance is compared with the CPU performance in terms of processing accelerations. The proposed implementation framework can be used in various radar systems including ground-based phased array radar, airborne sense and avoid radar, and aerospace surveillance radar.
KEYWORDS: Signal processing, Radar signal processing, Graphics processing units, Radar, Data acquisition, Phased arrays, Computer architecture, Doppler effect, Data processing, Imaging systems
This study introduces a practical approach to develop real-time signal processing chain for general phased array radar on NVIDIA GPUs(Graphical Processing Units) using CUDA (Compute Unified Device Architecture) libraries such as cuBlas and cuFFT, which are adopted from open source libraries and optimized for the NVIDIA GPUs. The processed results are rigorously verified against those from the CPUs. Performance benchmarked in computation time with various input data cube sizes are compared across GPUs and CPUs. Through the analysis, it will be demonstrated that GPGPUs (General Purpose GPU) real-time processing of the array radar data is possible with relatively low-cost commercial GPUs.
KEYWORDS: Radar, MATLAB, Surveillance, Algorithm development, Digital filtering, Super resolution, C++, Filtering (signal processing), Signal processing, Computing systems
Super-computing based on Graphic Processing Unit (GPU) has become a booming field both in research and industry. In this paper, GPU is applied as the main computing device on traditional RADAR super resolution algorithms. Comparison is provided between GPU and CPU as computing architecture and MATLAB, as a widely used scientific implementation, is also included as well as C++ implementation in demonstrations of CPU part in the comparison. Fundamental RADAR algorithms as matched filter and least square estimation (LSE) are used as standard procedure to measure the efficiency of each implementation. Based on the result in this paper, GPU shows an enormous potential to expedite the traditional process of RADAR super-resolution applications.
KEYWORDS: Radar, Signal to noise ratio, Monte Carlo methods, Super resolution, Doppler effect, Receivers, Algorithm development, Modulation, Frequency modulation, Interference (communication)
Super-resolution (SR) is a radar processing technique closely related to the pulse compression (or correlation receiver). There are many super-resolution algorithms developed for the improved range resolution and reduced sidelobe contaminations. Traditionally, the waveforms used for the SR have been either phase-coding (such as LKP3 code, Barker code) or the frequency modulation (chirp, or nonlinear frequency modulation). There are, however, an important class of waveforms which are either random in nature (such as random noise waveform), or randomly modulated for multiple function operations (such as the ADS-B radar signals in [1]). These waveforms have the advantages of low-probability-of-intercept (LPI). If the existing SR techniques can be applied to these waveforms, there will be much more flexibility for using these waveforms in actual sensing missions. Also, SR usually has great advantage that the final output (as estimation of ground truth) is largely independent of the waveform. Such benefits are attractive to many important primary radar applications. In this paper the general introduction of the SR algorithms are provided first, and some implementation considerations are discussed. The selected algorithms are applied to the typical LPI waveforms, and the results are discussed. It is observed that SR algorithms can be reliably used for LPI waveforms, on the other hand, practical considerations should be kept in mind in order to obtain the optimal estimation results.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.