Radio Frequency (RF) Microelectromechanical System (MEMS) switches are becoming important building blocks for a variety of military and commercial applications including switch matrices, phase shifters, electronically scanned antennas, switched filters, Automatic Test Equipment, instrumentation, cell phones and smart antennas. Low power consumption, large ratio of off-impedance to on-impedance, extreme linearity, low mass, small volume and the ability to be integrated with other electronics makes MEMS switches an attractive alternative to other mechanical and solid-state switches for a variety of space applications. Radant MEMS, Inc. has developed an electrostatically actuated broadband ohmic microswitch that has applications from DC through the microwave region. Despite the extensive earth based testing, little is known about the performance and reliability of these devices in space environments. To help fill this void, we have irradiated our commercial-off-the-shelf SPST, DC to 40 GHz MEMS switches with gamma-rays as an initial step to assessing static impact on RF performance. Results of Co-60 gamma-ray irradiation of the MEMS switches at photon energies ≥ 1.0 MeV to a total dose of ~ 118 krad(Si) did not show a statistically significant post-irradiation change in measured broadband, RF insertion loss, insertion phase, return loss and isolation.
Failure analysis tools and techniques that identify root cause failure mechanisms are key components to improving MEMS technology. Failure analysis and characterization are relatively simple at the wafer and die level where chip access is straightforward. However, analysis and characterization of packaged parts or components encapsulated with covers, caps, etc may be more cumbersome and lead to problems assessing the root cause of failure. This paper will discuss two methods used to prepare the backside of the package/device to allow for failure analysis and inspection of different MEMS components without removing the cap, cover, or lid on the device and/or the package. One method for backside preparation was grinding and polishing the package for IR inspection. This method involved backfilling the package cavity with epoxy to hold the die in place. The other method involved opening a window through the backside of the package, exposing the die for IR inspection. Failure analysis results showed both methods of backside preparation were successful in revealing the failure mechanisms on two different MEMS technologies.
In the future, MEMS switches will be important building blocks for designing phase shifters, smart antennas, cell phones and switched filters for military and commercial markets, to name a few. Low power consumption, large ratio of off-impedance to on-impedance and the ability to be integrated with other electronics makes MEMS switches an attractive alternative to other mechanical and solid-state switches. Radant MEMS has developed an electrostatically actuated broadband ohmic microswitch that has applications from DC through the microwave region. The microswitch is a 3-terminal device based on a cantilever beam and is fabricated using an all-metal, surface micromachining process. It operates in a hermetic environment obtained through a wafer-bonding process. We have developed PC-based test stations to cycle switches and measure lifetime under DC and RF loads. Best-case lifetimes of 1011 cycles have been achieved in T0-8 cans (a precursor to our wafer level cap) while greater than 1010 cycles have been achieved in the wafer level package. Several switches from different lots have been operated to 1010 cycles. Current typical lifetime exceeds 2 billion cycles and is limited by contact stiction resulting in stuck-closed failures. Stuck-closed failures can be intermittent with a large number of switches continuing to operate with occasional sticks beyond several billion cycles. To eliminate contact stiction, we need to better control the ambient gas composition in the die cavity. We expect lifetime to improve as we continue to develop and optimize the wafer capping process. We present DC and RF lifetime data under varying conditions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.