An analysis of the parametric interaction and the initial fiber geometry to achieve wavelength conversion
from common laser sources operating in the 1030-1064nm spectral band into the 900-950nm wavelength range has
been performed. The preliminary analysis shows that new fiber designs involving fibers with cores engineered with
crystal-like shapes and also pulsed fiber sources operating at wavelengths in the 1030-1064nm will be required to
achieve efficient emission within the desired wavelength range. Both the fiber required for phase-matching the
parametric nonlinear process and the pulsed fiber laser pump source are within reach of current technology. They both
require engineering efforts to produce a packaged, rugged and compact source.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.