The Active Thermal Architecture (ATA) is an advanced sub-1U Active Thermal Control technology (ATC) for high power payload support in 6U CubeSat form factors and above. The design utilizes a two-stage, single-phase mechanically pumped fluid loop coupled through a two-axis flexible rotary fluid hinge, to reject thermal power to a deployable tracking radiator. A COTS Ricor K508N cryocooler forms the second stage and provides cryogenic cooling to a custom Kevlar detector mount through a TMT pyrolytic graphene thermal strap. Passive vibration isolation and damping technologies prevent the transfer of jitter to the satellite systems. The ATA design utilizes state-of-the-art 3D fabrication techniques such as Ultrasonic Additive Manufacturing (UAM) to directly embed the working fluid channels into the HX, radiator, and CubeSat chassis allowing for the miniaturization and simplification of the ATA system into an integrated thermal control solution. This paper will focus on the design and ground-based characterization and qualification of the ATA system and provide performance metrics for its use as a thermal support subsystem for advanced infrared electro-optical CubeSat payloads. The ATA project is funded through a NASA Small Satellite Technology Program (SSTP) and is a partnership between the Center for Space Engineering at Utah State University and the Jet Propulsions Laboratory. The ATA active thermal control system has been raised to a TRL of 6 and hopes to provide payload support to advanced missions such as the SABER-Lite and JPL CIRAS projects.
RainCube (Radar in a CubeSat) is a technology demonstration mission to enable Ka-band precipitation radar technologies on a low-cost, quick-turnaround platform. The 6U CubeSat, currently in orbit, features a radar payload built by the Jet Propulsion Laboratory and a spacecraft bus and operations provided by Tyvak Nano-Satellite Systems. Following the deployment of the half-meter parabolic antenna, the radar first observed rainfall over Mexico. The mission continues to operate and has met all requirements through repeated observations of precipitation in the atmosphere. RainCube is funded through the Science Mission Directorate’s Research Opportunities in Space and Earth Science 2015 In-Space Validation of Earth Science Technologies solicitation. We report on the first radar observations of precipitation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.