Airborne lidar data for fishery surveys often do not contain physics-based features that can be used to identify fish; consequently, the fish must be manually identified, which is a time-consuming process. To reduce the time required to identify fish, supervised machine learning was successfully applied to lidar data from fishery surveys to automate the process of identifying regions with a high probability of containing fish. Using data from Yellowstone Lake and the Gulf of Mexico, multiple experiments were run to simulate real-world scenarios. Although the human cannot be fully removed from the loop, the amount of data that would require manual inspection was reduced by 61.14% and 26.8% in the Yellowstone Lake and Gulf of Mexico datasets, respectively.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.