The contamination on optical surface is an important factor that causes laser-induced damage. In the assembly process of the SGIII, the traditional manual assembly method poses a great challenge in terms of the cleanliness of optical components. So the contamination introduced by the manual assembly is studied including particulate and non-volatile residue (NVR). The use of vacuum system device to clamp is an important means to achieve automated clean assembly. The contact contamination is the main source of contaminants in the vacuum-clamping process. One source is the organic residue left on the optical surface, by comparing the residue of different sealing rubber after absorbing the optics, we find that FPM (fluorine rubber) brings the least contamination. The second source is the coating debris causing by the compressive and shear stress on the optical surface during the vacuum clamping process. We have established a theoretical model, through the numerical simulation method to obtain the stress under different assembly conditions. For different optical films, the stress during the assembly process cannot exceed the fatigue limit of the optical coating to prevent the film from being destroyed and debris contamination. The cleanliness level of the vacuum clamp assembly process is evaluated through experiments. The results show that the contamination generated by assembling large-aperture optics with a vacuum gripper meets the optical surface cleanliness requirements.
In high-power laser system, the surface wavefront of large optics has a close link with its structure design and mounting method. The back-support transport mirror design is presently being investigated as a means in China’s high-power laser system to hold the optical component firmly while minimizing the distortion of its reflecting surface. We have proposed a comprehensive analytical framework integrated numerical modeling and precise metrology for the mirror’s mounting performance evaluation while treating the surface distortion as a key decision variable. The combination of numerical simulation and field tests demonstrates that the comprehensive analytical framework provides a detailed and accurate approach to evaluate the performance of the transport mirror. It is also verified that the back-support transport mirror is effectively compatible with state-of-the-art optical quality specifications. This study will pave the way for future research to solidify the design of back-support large laser optics in China’s next generation inertial confinement fusion facility.
Surface control and phase matching of large laser conversion optics are urgent requirements and huge challenges in high-power solid-state laser facilities. A self-adaptive, nanocompensating mounting configuration of a large aperture potassium dihydrogen phosphate (KDP) frequency doubler is proposed based on a lever-type surface correction mechanism. A mechanical, numerical, and optical model is developed and employed to evaluate comprehensive performance of this mounting method. The results validate the method’s advantages of surface adjustment and phase matching improvement. In addition, the optimal value of the modulation force is figured out through a series of simulations and calculations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.