In recent years, pre-strained TiNi shape memory alloys (SMA) have been used for fabricating smart structure with carbon fibers reinforced plastics (CFRP). However, since the curing temperature of CFRP is higher than the reverse transformation temperatures of TiNi SMA, special fixture jigs have to be used for keeping the pre-strain during fabrication, which restricted its practical application. We have developed a new method to control the transformation temperatures of SMA by proper thermo-mechanical treatments and composition adjustment, which is suitable to fabricate SMA/CFRP smart composite with a curing temperature of 130C. Furthermore, we tried to develop a new fabrication technique which is also suitable to fabricate SMA/CFRP smart composite with a curing temperature of 180C. It was found that by using cold drawn ultra-thin TiNi wires, TiNi/CFRP composites with a curing temperature of 180C could be fabricated without special fixture jigs. The damage suppression effect by embedded ultra-thin wires in the smart composite was confirmed.
In recent years, pre-strained TiNi shape memory alloys (SMA) have been used for fabricating smart structure with carbon fibers reinforced plastics (CFRP) in order to suppress microscopic mechanical damages. However, since the cure temperature of CFRP is higher than the reverse transformation temperatures of TiNi SMA, special fixture jigs have to be used for keeping the pre-strain during fabrication, which restricted its practical application. In order to overcome this difficulty, we developed a new method to fabricate SMA/CFRP smart composites without using special fixture jigs by controlling the transformation temperatures of SMA during fabrication. This method consists of using heavily cold-worked wires to increase the reverse transformation temperatures, and of using flash electrical heating of the wires after fabrication in order to decrease the reverse transformation temperatures to a lower temperature range again without damaging the epoxy resin around SMA wires. By choosing proper cold-working rate and composition of TiNi alloys, the reverse transformation temperatures were well controlled, and the TiNi/CFRP hybrid smart composite was fabricated without using special fixture jigs. The damage suppressing effect of cold drawn wires embedded in CFRP was confirmed.
The focus of this work is the thermomechanical characterization and effect of damage recovery on the pre-strained SMA wire embedded CFRP composites for developing the smart composites with self-damage control. The SMA utilized in this work is a Ni-45at percent Ti wire with a diameter of 0.4 mm. A steel mold was specially designed to embed the pre-strained TiNi wire into CFRP preperg and prevent their recovery during the cure cycle. TiNi/CFRP composites were fabricated by hot-pressing in the temperature range of 150-180 degrees C by controlling the applied pressure. The overall research is divided into four parts: fabrication of SMA wire embedded CFRP composites, experimental characterization of thermomechanical behavior on SMA wire by electrical heating, recovery effect of self-damage control in composites and sensing effect by detecting the electrical resistance at SMA wire. Compressive recovery force induced by thermomechanical actuation of SMA depends on pre-strained level and volume fraction of TiNi. The hot-pressed TiNi/CFRP specimens were loaded under tensile test in order to induce a transverse crack or partial damage. Specially, transverse crack easily happen at 90 degrees stacking CFRP layers. The damage degree due to generation of transverse cracks is quantified by real-time measurements of electrical resistance of SMA in composites during tensile load. After electrical heating, the generated transverse cracks at composites successfully repaired due to compressive force introduced by pre-strained TiNi wires and resulting in the self-damage recovery effect.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.