We have been progressing on our comprehensive program of improving high-resolution imaging at the Navy Precision Optical Interferometer (NPOI) hosted at Lowell Observatory’s Anderson Mesa site, for the purpose of spatially resolved observations of faint objects at scales down to less than 1 milliarcsecond. The ‘PALANTIR’ upgrade of NPOI has commenced with individually operating 1 meter PlaneWave PW1000 telescopes at the site, with integration of those telescopes into the array with interferometric operations expected in the near-term. These telescopes are housed in mobile domes for rapid relocation around the array, and are being augmented with adaptive optics. Another notable recent milestone has been the re-activation of full six-way on-sky operations with siderostat feeds during the summer of 2021. Additionally, our ‘NPOI Plus-Up’ plan will implement sweeping infrastructure updates, improving and streamlining its operations. Upcoming Plus-Up work taking place over the next few years includes expansion of the operating infrastructure to the array’s longest physical baselines at 432 meters, adding a near-infrared beam combiner, rehabilitation of the VISION visible combiner, modernization of the fast delay line control system, and implementation of the long delay lines in the framework of a beam train auto-aligner.
KEYWORDS: Switches, Control systems, Safety, Precision optics, Interferometers, Analog electronics, Computer programming, Stepper motor drivers, Logic, Power supplies
The Navy Precision Optical Interferometer (NPOI) is approaching 30 years of operational life. During that time it has carried out many observations of single and multiple star systems, and has seen upgrades to subsystems and expansion of capabilities. For the last couple of years there has been a major ongoing effort to expand the capabilities of the NPOI with new telescopes, new instruments, and completion of the bootstrapping and imaging capability that was part of the original NPOI design. As part of this upgrade we are also upgrading and replacing some electronic systems. Some technologies which were state-of-the art, e.g. VxWorks, have over the years been overtaken by inexpensive systems such as embedded microcontroller, consumer-grade compact system such as Raspberry Pi1 and Arduino,2 and inexpensive manufacture of simple and powerful custom PCBs. This makes it possible to incorporate remote controls of actuators which will be a major convenience compared to the existing system of manual controls.
We have been pursuing a comprehensive program of improving high-resolution imaging at the Navy Precision Optical Interferometer (NPOI) hosted at Lowell Observatory’s Anderson Mesa site, for the purpose of spatially resolved observations of faint objects at scales down to less than 1 milliarcsecond. This activity at NPOI is being implemented with two primary phases. First, the ‘PALANTIR’ upgrade of NPOI is augmenting the existing telescope array with three 1-meter PlaneWave PW1000 telescopes. These telescopes are housed in mobile domes for rapid relocation around the array, and are being augmented with adaptive optics. Second, we are implementing a ‘NPOI Plus-Up’ plan which is modernizing the array infrastructure and streamlining its operations. All of these activities are being carried out as our current operations are continuing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.