This work presents results of mode analysis and dispersion spectral characteristic computation, performed for recently presented successfully fabricated silica few-mode microstructured optical fiber (MOF) with hollow-GeO2-doped-ring core (HRC). Here, we utilized manufactured HRC MOF end face photo image to get averaged parameters for input data. Therefore, following simplified model HRC MOF was simulated and researched: it has outer diameter 67 µm; inner diameter of hollow ring-core is 10 µm, wall thickness 4 µm and refractive index difference Δn = 0.030 (percent of GeO2 dopant is about 20.5 mol%); 90 air holes, placed over typical hexagonal geometry in the periphery region with averaged diameter 1.85 µm and pitch 3.9 µm. According to simulation results (mode analysis, performed by rigorous finite element method via commercially available software COMSOL Multiphysics® 6.1), modeled HRC MOF provides two guided LP-modes (fundamental LP01 and the first higher-order LP11) or 4 HE/EH odd and even eigenmodes – HE11/EH11 and HE21/EH21, respectively: therefore, two orbital angular momentum (OAM) modes (OAM11 and OAM21) are localized and supported by the researched and simulated HRC MOF design. In this work we present results of spectral characteristics, computed for mode effective refractive indexes as well as for mode group delays and chromatic dispersion parameters, calculated both for eigen and OAM modes.
This work reports results of dispersion analysis, performed for the fundamental mode of silica microstructured optical fiber (MOF) with six GeO2-doped cores. We used commercially available software COMSOL Multiphysics® 6.1 with rigorous full vectorial finite element method, while earlier on fabricated and presented MOF with six step-index GeO2- doped cores end face photo image was applied to get averaged parameters for input data. Therefore, modeled multi-core MOF has typical “telecommunication” outer diameter 125 µm, it contains six cores with diameter 9.0 µm and step refractive index profile with height n=0.0275, 121 air holes with diameter 5.0 µm and pitch 7.8 µm. In this work we present results of the fundamental mode 1st…3rd order dispersion parameters, computed over all ratified “telecommunication” wavelength bands.
This work presents results of test series, performed for earlier on designed and successfully fabricated silica few-mode microstructured optical fibers (MOF) with six GeO2-doped cores, induced twisting 50 revolutions per meter, typical “telecommunication” outer diameter 125 µm, core diameter 8.7 µm, air hole diameter 4.6 µm, pitch 7.2 µm, and core graded refractive index profiles with height 0.0275. While Part I introduced results of differential mode delay map measurements with laser source excitation / laser-based data transmission over multimode optical fibers (MMFs) with core diameters 50 and 100 µm, combined with 6-core MOF, Part II was concerned with researches of spectral responses, measured for fiber Bragg gratings, recorded in these MOFs, and Part III was focused on laser beam profile measurements, performed for weakly and strong twisted 6-core-MOFs, Part IV reports results of MMF-MOF-MMF fiber optic structure spectral response measurements under direct tension with pull load 0…300 g.
This work presents results of test series, performed for earlier on designed and successfully fabricated silica few-mode microstructured optical fibers (MOF) with six GeO2-doped cores, induced twisting 100 and 600 revolutions per meter, typical “telecommunication” outer diameter 125 µm, core diameter 8.7 µm, air hole diameter 4.6 µm, pitch 7.2 µm, and core graded refractive index profiles with height 0.0275. While Part I introduced results of differential mode delay map measurements with laser source excitation / laser-based data transmission over multimode optical fibers (MMFs) with core diameters 50 and 100 µm, combined with 6-core MOF, and Part II was concerned with researches of spectral responses, measured for fiber Bragg gratings, recorded in these MOFs, Part III reports results of far-field white light beam profile measurements, performed for weakly and strong twisted 6-core-MOFs.
This work reports results of laser beam profile measurements, performed for earlier on designed and successfully fabricated silica few-mode microstructured optical fiber (MOF) with hollow-GeO2-doped-ring core (HRC). We compared two drawn from the same preform HRC MOF samples without and with induced during the drawing process twisting of 790 revolutions per meter. Researched silica HRC MOF with outer diameter 65 µm contains hollow ring-core inner diameter of 30.5 µm with wall thickness of 1.7 µm and refractive index difference Δn = 0.03; 90 air holes, placed over typical hexagonal geometry in the periphery domain from the outside HRC at the distance 14 µm, with hole averaged diameter 2.5 µm and pitch 7.5 µm. According to simulation results (mode analysis, performed by rigorous finite element method via commercially available software COMSOL Multiphysics®), it supports two guided LP-modes (fundamental LP01 and the first higher-order LP11) or 4 HE/EH odd and even eigenmodes – HE11/EH11 and HE21/EH21, respectively. We present some results of laser beam profile measurements, performed under various launching conditions (different laser sources as well as excited optical fibers (both commercially available single-mode optical fiber of ITU-T Rec. G.652 and multimode optical fiber 50/125 of ISO/IEC Cat. OM2+/OM3)) at the output ends of researched HRC MOF twisted and untwisted samples as well as at the output end of large core multimode optical fiber 100/125, aligned with excited HRC MOF.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.