Achieving gigahertz transit frequencies in low-voltage organic thin-film transistors (TFTs) will require a contact resistance below about 1 Ohm-cm [1,2]. A general approach to reduce the contact resistance in organic devices is to modify the surface of the metal contacts with a chemisorbed interface layer, ostensibly by reducing the nominal injection barrier. Combined with a thin gate dielectric, this approach can enable contact resistances below 30 Ohm-cm and transit frequencies above 10 MHz at low voltages in coplanar organic TFTs [3,4]. However, further reduction of the contact resistance depends strongly on non-idealities of the interface other than the nominal barrier height according to the Schottky-Mott limit. We show a detailed study on the efficacy of interface layers based on various thiols to improve the contact resistance in coplanar dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DNTT) TFTs. We compare the contact resistance of multiple sets of TFTs to results from ultraviolet photoelectron spectroscopy measurements and find strong evidence that Fermi-level pinning prevents a significant reduction of the contact resistance below about 100 Ohm-cm in DNTT TFTs. Therefore, we conclude that this approach may not be a generally sufficient method by itself to eliminate the contact resistance in organic TFTs.
The realm of nanooptics is usually characterized by the interaction of light with structures having relevant feature sizes
much smaller than the wavelength. To model such problems, a large variety of methods exists. However, most of them
either require a periodic arrangement of a unit cell or can handle only single entities. But there exists a great variety of
functional devices which may have either a spatial extent much larger than the wavelength and which comprise structural
details with sizes in the order of a fraction of the wavelength or they may consist of an amorphous arrangement of
strongly scattering entities. Such structures require large scale simulations where the fine details are retained. In this
contribution we outline our latest research on such devices and detail the computational peculiarities we have to
overcome. Presenting several examples, we show how simulations support the physical understanding of these devices.
Examples are randomly textured surfaces used for solar cells, where guided modes excited in the light absorbing layers
strongly affect the solar cell efficiency, amorphous metamaterials and stochastically arranged nanoantennas. The usage
of computational experiments will be motivated by the unprecedented insight into the functionality of such components.
We present a newly developed microscope for sum frequency generation (SFG) imaging of opaque and reflecting interfaces. The sample is viewed at an angle of 60° with respect to the surface normal in order to increase the collected SFG intensity. Our setup is designed to keep the whole field of view (FOV) in focus and to compensate for the distortion usually related to oblique imaging by means of a blazed grating. The separation of the SFG intensity and the reflected visible beam is accomplished by a suitable combination of spectral filters. The sum frequency microscope (SFM) is capable of in-situ chemically selective imaging by tuning the IR-beam to vibrational transitions of the respective molecules. The SFM is applied to imaging of structured self-assembled monolayers (SAM) of thiol molecules on a gold surface.
Conference Committee Involvement (3)
Nanofabrication: Technologies, Devices, and Applications II
23 October 2005 | Boston, MA, United States
Nanofabrication: Technologies, Devices, and Applications
25 October 2004 | Philadelphia, Pennsylvania, United States
Nanotechnology
19 May 2003 | Maspalomas, Gran Canaria, Canary Islands, Spain
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.