Cryogenic machining is a cooling strategy that has recently been frequently found in research in machining processes for materials such as inconel or titanium. In particular it is reported that these processes are more efficient in terms of tool life and material removal rate compared to those with water-based cooling lubrication. An increase in efficiency and productivity has significant potential from a cost perspective, especially when grinding Ceramic Matrix Composite materials and similar. These processes are used, for example, in the lightweighting of telescope mirrors made of e.g. fiber-reinforced silicon carbide, or Zerodur. An increase in productivity would be clearly noticeable in the manufacturing costs due to normally long machining times. In the "KryoSonic" project, we investigated whether and to what extent the use of cryogenic machining affects the rough machining of Zerodur with and without ultrasonic support.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.