In this paper and presentation, we will focus on different aspects of backscattering-based wireless communication and power transfer to small biomedical implants. We will present three different antenna topologies for data and power transfer through tissue, in vitro and in vivo studies on implantable intracranial pressure (ICP) sensors and give insight and analysis on wireless link reliability in tissue environment. We will also present radio frequency identification (RFID) -based implant platform and communication method. Moreover, we will focus on differences and challenges of in vivo environment compared to laboratory phantoms and tissue models. In our studies, different types of implantable antennas have been tested to investigate reliability, accuracy and sensitivity of the brain implants: a hybrid near field-far field system with a piezoresistive sensor for ICP monitoring [2], [4], a UHF band spilt-ring resonator system [3] and LC tank based miniature implantable antenna [5]. This paper will present these implant antennas and wireless power transfer in tissue environment present in human head.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.