Single-pixel imaging uses a single-pixel detector to capture all photons emitted from the two-dimensional scene, and then calculates and reconstructs the two-dimensional target scene image from the one-dimensional measurement data through single-pixel reconstruction methods (such as linear superposition, compressed sensing or deep learning) based on the one-dimensional acquisition data and the corresponding illumination coding. Compared with traditional cameras, single-pixel imaging has the advantages of high signal-to-noise ratio and wide spectrum. Due to these advantages, single-pixel imaging has been widely used in multispectral imaging. However, the traditional single-pixel image reconstruction methods have some disadvantages, such as low resolution, huge time consuming and poor reconstruction quality. In this paper, we propose a single-pixel image reconstruction method based on neural network. Compared with the traditional single-pixel image reconstruction method, this method has better reconstruction quality at lower sampling rate. Specifically, in this model, we first use a small optimized-patterns to simulate a single-pixel camera to sample the image to obtain the measured values, and then extract multi-channel high-dimensional semantic features from the sampled values through a high-dimensional semantic feature extraction network. Then, the multi-scale residual network module is used to construct the feature pyramid up-sampling module to up sample the high-dimensional semantic features. In the training process, the network parameters and pattern are jointly optimized to obtain the optimal network model and pattern. With the help of large-scale and pre-training, our reconstructed image has higher resolution, shorter reconstruction time and better reconstruction quality.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.