Based on the extremely narrow half-height width (FWHM) characteristics of ultrashort pulsed lasers, a DIC imaging technique that can realize picosecond time resolution is proposed by combining the traditional digital image correlation (DIC) technique with it. This method can solve the problems of blurring and dragging of scattering images caused by the sudden crack initiation and fast crack expansion in the fracture process of brittle materials. The crack opening displacement (COD) and the full-field displacement of the sample at the instant of cracking of brittle materials can also be obtained. In addition, the error in spatial resolution of the traditional DIC technique using a continuous light source can be greatly reduced by using this method. In this paper, this method is used to record the tip displacement field of a tuff sample containing a type I prefabricated crack under semicircular disk three-point bending (SCB) experimental conditions. The experimental results show that the recording of crack extension behavior on the order of picoseconds can be achieved using this method, and the key parameters of fracture of brittle materials are calculated more accurately.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.