We still lack a detailed map of the anatomical disposition of neurons in the human brain. A complete map would be an important step for deeply understanding the brain function, providing anatomical information useful to decipher the neuronal pattern in healthy and diseased conditions. Here, we present several important advances towards this goal, obtained by combining a new clearing method, advanced Light Sheet Microscopy and automated machine-learning based image analysis. We perform volumetric imaging of large sequentially stained human brain slices, labelled for two different neuronal markers NeuN and GAD67, discriminating the inhibitory population and reconstructing the brain connectivity.
We still lack a detailed map of the anatomical disposition of neurons in the human brain. A complete map would be an important step for deeply understanding the brain function, providing anatomical information useful to decipher the neuronal pattern in healthy and diseased conditions. Here, we present several important advances towards this goal, obtained by combining a new clearing method, advanced Light Sheet Microscopy and automated machine-learning based image analysis. We perform volumetric imaging of large sequentially stained human brain slices, labelled for two different neuronal markers NeuN and GAD67, discriminating the inhibitory population and reconstructing the brain connectivity.
Confocal detection in digital scanned laser light-sheet fluorescence microscopy (DSLM) has been established as a gold standard method to improve image quality. The selective line detection of a complementary metal–oxide–semiconductor camera (CMOS) working in rolling shutter mode allows the rejection of out-of-focus and scattered light, thus reducing background signal during image formation. Most modern CMOS have two rolling shutters, but usually only a single illuminating beam is used, halving the maximum obtainable frame rate. We report on the capability to recover the full image acquisition rate via dual confocal DSLM by using an acousto-optic deflector. Such a simple solution enables us to independently generate, control and synchronize two beams with the two rolling slits on the camera. We show that the doubling of the imaging speed does not affect the confocal detection high contrast.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.