HydRON ambition is to seamlessly integrate the space optical transport network into the terrestrial high capacity network infrastructure: the “Fibre in the Sky”. In HydRON, it is envisaged “All-Optical payloads” being interconnected by means of optical inter-satellite links in the Tbps regime (Terabit per second) furnishing the “bridges” for a truly “Fibre in the Sky” network. Technically speaking HydRON aims at Tbps “All-Optical Network” solutions, dividing the satellite payload into (i) a network part and (ii) an application / service part, equivalent to the backbone part and the access part of optical fibre networks on ground. The application / service part (i.e., the Customer’s payload) has access to the network part (i.e., the HydRON elements), in a similar way as computers are plugged into the terrestrial network.
HydRON encompasses optical feeder links connecting to a space network of in-orbit technology demonstrator payloads, which are interconnected by means of Tbps laser inter-satellite links. WDM (Wavelength Division Multiplexing) laser communication terminals (on ground and in space), optical switching / routing capabilities and high-speed interface electronics will be implemented on-board the network nodes in space to enable a high throughput network connection to the application / service part (i.e., the Customer’s payload). The space network concept will reduce the dependency on atmospheric conditions of single ground stations as all HydRON nodes can get their particular data via the network they are interfacing with. A combination of new optical technologies, novel photonics equipment and efficient network concepts will be proven in orbit. The system architecture must be adaptable to the changing network conditions.
The current status of the above mentioned investigations will be summarised in the present paper.
ESA's Telecommunications and Integrated Applications Directorate (TIA) runs a dedicated programmatic framework to Optical Communication Technologies, called ARTES ScyLight (SeCure and Laser communication Technology, pronounced "skylight").
ScyLight supports the development and deployment of innovative optical technologies for satellite communication as well as assisting industry to develop new market opportunities for optical communication technologies.
The ScyLight programme focuses the efforts of European and Canadian industry on optical communication technologies in the following areas:
•Optical Communication Technology at System Level
•Optical Communication Terminal Technology
•Intra-Satellite Photonics/Optical Payloads
•Quantum Cryptography Technologies in Space and initial services demonstration
The paper will give an overview of the programme status and an outlook on its evolution.
The paper will inform about the status of a new proposed ESA project on optical communications called “High thRoughput Optical Network” (HydRON), which aims to demonstrate European and Canadian capabilities in all fields of optical communications and with the seamless integration into terrestrial network structures, via a dedicated mission.
The Public-Private-Partnership between ESA and Airbus Defense and Space (Germany) has created the European Data Relay System (EDRS), which is operational since 2016.
The joint teams are running the Phase B of the globalisation of the European Data Relay System (EDRS) with an addition to the programme called EDRS Global (former GlobeNet).
EDRS Global is planning to increase the capacity of EDRS by adding a geostationary data relay payload, called EDRSD, over the Asia-Pacific region – in cooperation with Airbus DS partner JSAT (Japan). The heart of the system will be multiple laser terminals, based on TESATs upgraded design, featuring also a dual wavelength capability (1064 nm and 1550 nm) to serve more customers at the same time. The 1550 nm capabilities will be implemented in a cooperation between Airbus and TESAT (Germany), and NEC (Japan).
The evolution of the service will also aim for security sensitive user missions, including RPAS missions. The Laser Communication Technology on-board EDRS-D will be the starting point for the world’s first global laser based network in space, providing Global Secure Quasi-Real- Time-Services at Gigabit per second speed back to Europe by connecting its EDRS GEO nodes (EDRS-A/-C and EDRS-D) over 80,000 km distance by the means of optical communication.
The paper will provide details of the project and information about the latest status.
Optical communication Technologies are considered to be one of the next major revolutions in satellite communication, bringing unprecedentedly high levels of transmission rates, data security and resilience. However technical developments and early implementations cannot demonstrate its full capabilities, as the optical solution is mainly used in nonoptimized (SatCom) systems. To address the system level aspects ESA and its member states have implemented the operational European Data Relay System (EDRS) providing routine Quasi-Real-Time-Data Services to the European Commission Copernicus satellite fleet. Furthermore, a dedicated programme for Optical Communication was created called "ScyLight" which stands for a "SeCure and Laser communication Technology" Framework Programme. To integrate satellite and terrestrial networks ESA is now preparing its next logical step in optical communication systems by creating the elements for a High Throughput Opticial Network called HydRON. In HydRON optical interconnections in the Tbps (Terabit per second) region will be established including "All-Optical payloads” providing the means for a truly "Fibre in Space" network. Technically speaking HydRon is aiming for Tbps "All-Optical Network” solutions, dividing the satellite payload into a network part and an application part - similar to optical fiber networks on ground. The application is hooked to the network. HydRON will prepare Optical Feeder uplinks into a network of in orbit Technology Demonstrators (called HydRON#1, #2, etc.), which will be interconnected by means of Tbps laser intersatellite links. WDM Laser terminals (ground/space) and optical routing capabilities on-board the network nodes in space will be implemented together with optical payloads to enable a high throughput network connection to the applications. The space network concept will reduce the dependency on single ground stations as all HydRON nodes will get their particular data via the network they are interfacing with. A combination of new optical technologies, novel photonics equipment and efficient network concepts will be proven in orbit. HydRON shall not be seen as THE solution for all, but shall give a platform to demonstrate the capabilities of multiple industry players and to prepare for the future: a European/Canadian SHOW CASE on Optical Communications!
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.