In different biological studies, such as cell regeneration studies, cell tracking over time is required. Thus, in these studies, the evolution of an amputated limb of the crustacean Parhyale hawaiensis is tracked using 4D confocal microscopy images. However, given the high number of images, noise level and number of cells make the manual cell tracking process a complex, cumbersome and difficult task. The tracking process using image processing techniques generally includes three stages: image enhancement, segmentation and cell identification. A tool made for this purpose, as a plugin of the ImageJ program is TrackMate, commonly used by biologists, which includes for segmentation the Laplacian of Gaussian (LoG) and Difference of Gaussians (DoG) edge detectors. To provide even more powerful detectors, the filtering methods based on the second derivative of Deriche and Shen and Castan were implemented and included in TrackMate. These four methods were evaluated for cell detection in images of Parhyale hawaiensis, finding that the Deriche and, Shen and Castan filters detected an appreciable number of false positives, due to sensitivity to noise and because the same cell was counted multiple times. As for the LoG and DoG methods, they presented the best results, being very similar because the DoG is basically an approximation of the LoG, finding that the DoG method slightly outperformed the LoG.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.