In multinational defence operations, either EU or NATO driven, the exchange of surveillance and reconnaissance data and information is an essential aspect to provide to the commander the needed situational awareness. This improvement of situational awareness, especially in a maritime environment, may be achieved amongst others by extending the ISTAR performance through using unmanned systems (UxS) and integrating them into the combat management system (CMS), ensuring interoperability between the deployed forces and building the overall system based on a solid architecture. Within this frame, the OCEAN2020 (Open Cooperation for European mAritime awareNess) project, funded by the European Union's Preparatory Action on Defence Research and implemented by the European Defence Agency, sees 42 partners from 15 EU countries working together to build future maritime surveillance by integrating drones, unmanned vessels and unmanned submarines into fleet operations. Data and information will be integrated in a comprehensive (maritime) picture of developing situations, enhancing the situational awareness, and thus supporting military commanders on different unit levels in their decision making. This paper focuses on the challenge to define flexible architectures for maritime operations. The reference architecture for a system-of-systems that aims to provide enhanced situational awareness in a naval environment will be presented. The reference architecture provides reusable structures and rules, helping to reduce development and system realization time and costs. This Reference Architecture will establish strategic decisions regarding system technologies to be used and will serve as baseline for the development of two Target Architectures for the two planned demonstrations.
In multinational defense operations, either EU or NATO driven, the exchange of surveillance and reconnaissance data and information is an essential aspect to be able to act promptly. Coordinated processes and agreements are the basis, distribution architectures, services, interfaces and formats the prerequisite. In the NATO context, the Joint ISR (Intelligence, Surveillance and Reconnaissance) process supports the execution of surveillance and reconnaissance tasks. The Coalition Shared Data (CSD) concept and the associated specifications, interfaces and information models defined in STANAGs (Standardization Agreements), as well as the NATO ISR Interoperability Architecture (NIIA), facilitate the exchange of information based on the described processes. The EU uses CISE (Common Information Sharing Environment) and MARSUR (Maritime Surveillance), which are based on NATO-like principles. Within this frame, the OCEAN2020 (Open Cooperation for European mAritime awareNess) project, funded by the European Union's Preparatory Action on Defense Research and implemented by the European Defense Agency, sees 42 partners from 15 EU countries working to network future maritime surveillance and interdiction missions at sea integrating drones and unmanned submarines into fleet operations. Here data and information will be integrated in a comprehensive (maritime) picture of developing situations for military commanders on different unit levels. Maritime Operation Centers (MOC) on a national and EU level can be connected with operational commands/units to exchange information. With its remote-acting units equipped with only temporary and often narrow-band network connections, the Navy places particular demands on architecture (s). This paper focuses on the challenge to define flexible architectures for maritime operations.
Experiences from recent conflicts show the strong need for smart sensor suites comprising different multi-spectral imaging sensors as core elements as well as additional non-imaging sensors. Smart sensor suites should be part of a smart sensor network – a network of sensors, databases, evaluation stations and user terminals. Its goal is to optimize the use of various information sources for military operations such as situation assessment, intelligence, surveillance, reconnaissance, target recognition and tracking. Such a smart sensor network will enable commanders to achieve higher levels of situational awareness.
Within the study at hand, an open system architecture was developed in order to increase the efficiency of sensor suites. The open system architecture for smart sensor suites, based on a system-of-systems approach, enables combining different sensors in multiple physical configurations, such as distributed sensors, co-located sensors combined in a single package, tower-mounted sensors, sensors integrated in a mobile platform, and trigger sensors. The architecture was derived from a set of system requirements and relevant scenarios. Its mode of operation is adaptable to a series of scenarios with respect to relevant objects of interest, activities to be observed, available transmission bandwidth, etc.
The presented open architecture is designed in accordance with the NATO Architecture Framework (NAF). The architecture allows smart sensor suites to be part of a surveillance network, linked e.g. to a sensor planning system and a C4ISR center, and to be used in combination with future RPAS (Remotely Piloted Aircraft Systems) for supporting a more flexible dynamic configuration of RPAS payloads.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.