Techniques based on optical, x ray, and electron microscopy measurements are applied to characterized a wide variety of semiconductor multilayer structures. Bragg mirrors serve as valuable test structures for evaluating the epitaxial uniformity of crystal growth systems. Careful characterization of half-wave space single quantum wells provides a method for determining their complex refractive indices using reflectance spectroscopy. Comparison of cross-sectional microphotoluminescence to surface-normal photoluminescence, combined with these characterization techniques, allows studies of spontaneous emission in microcavities and elucidates the difficulties with using surface-normal photoluminescence to determine the alloy composition of the mirror layers. The application of these characterization methods to visible- wavelength AlGaAs mirrors, 485-720 nm, enables the development of these mirrors for uses such as optically tailored substrates and visible surface-emitter or detector arrays.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.