Far-field dot pattern generation is analyzed for a Gaussian beam source that illuminates a sinusoidal phase grating which is placed at a certain distance behind the beam waist. We obtain a bigger field of view with more numbers of points using a Gaussian beam in comparison to a plane wave illumination because of the initial curvature of the Gaussian beam. Light propagation modeling through the sinusoidal grating is carried out using different approximations for a thin and thick phase grating. Using thin element approximation (TEA), the complex field is carried out with low computational effort and accuracy. We compare TEA with more accurate methods, such as FFT-BPM and FDTD methods. For thin phase gratings, TEA can be used but for thick gratings, FDTD method is the only valid option. For thick phase gratings, the effect of reflection from phase grating on the field modulation increases and we use FDTD method to find the correct far field pattern distribution.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.