Low damage processes for an EUV mask consisting of an LR-TaBN absorber and a thin CrN buffer layer with a thickness of 10-nm have been successfully demonstrated through a dry etching process with high selectivity for the absorber, AFM and EB repair processes, and damage less dry etching process of the CrN buffer layer. Deploying an ICP etching process using CHF3 gas, we achieved high etching selectivity of 40 between the LR-TaBN absorber and the CrN buffer and LR-TaBN absorber patterns with nearly vertical sidewalls of a feature size of 150-nm in width. Damage to the multilayer film and the CrN buffer induced by repair process was evaluated using a LR-TaBN mask with a 10-nm thick CrN buffer layer via AFM machining and EB etching techniques. Cross sectional TEM analysis of the repaired mask indicated that the multilayer film showed no significant structural damage, against optimized AFM and EB repair processes. Since the CrN buffer lost a mere 1 nm in thickness in the EB etching process, EB repair appear to represent a promising damage-free repair technique for EUV masks with CrN buffer layers. The reflectivity loss on the multilayer film, caused by dry etching of CrN buffer layer with Cl2 and O2 mixed gases, was improved by an etching process under relatively high pressure. The CrN buffer layer can be etched for the patterns of 150-nm in width without footing at 50% overetch. The results confirm that the reflectivity losses on multilayer film are within 1% after undergoing the improved CrN buffer etching process.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.