High-tech industries are often the cause of groundwater contamination that affects surrounding areas. While steps must be taken to prevent this type of contamination, high-tech industries should be able to procure the required amounts of high-quality groundwater for their manufacturing processes. The objective of the Advanced Environmental Monitoring System (AEMS) project is to develop a new integrated groundwater monitoring system based on innovative technologies
in order to facilitate effective management of groundwater contamination in and around high-tech industrial facilities.
It will be possible to use the biosensors developed in this project not only to monitor ground and other fresh water from various sources for contamination, but also to assess the toxicity and environmental hazards arising from industrial effluents. The AEMS project provides high-tech industries with the means to fulfill their commitments to modern society. Through this project they can pursue sustainable development, compliance with environmental regulations, responsible corporate citizenship, effective life-cycle management, and improved worker safety.
In recent years, we have developed an advanced environmental monitoring system (AEMS) containing the eco-sensor, which means a sensor for the measurement of environmental pollutants, based on lipid membranes for continuous monitoring of underground water in industry areas such as semiconductor factories. The AEMS project is composed of three work packages followed by 1)Eco-sensor, 2)Prediction of plume propagation using a computer simulation technique, and 3)Environmental protection method. In this presentation, we would like to focus on the study of the eco-sensor. The reason why lipid membranes selected as a sensing element for environmental pollutants is that the pollutants should be interacted with cell membranes because cells are surrounded by cell membranes containing lipid components. Improving the applicability and the responsibility of bilayer lipid membranes (BLMs) in the eco-sensor, we have investigated the automatic BLMs preparation device. An automatic BLMs preparation was remarkably improved. The sensitivity to volatile organic chlorinated compounds such as cis-1,2-dichloroethylene was in the order of 10ppb using the monoolein BLMs even in real underground water. We also have been developing a smaller sized eco-sensor for the practical use.
In recent years, we have developed an advanced environmental monitoring system (AEMS) containing the eco-sensor, which means a sensor for the measurement of environmental pollutants, based on lipid membranes for continuous monitoring of underground water in industry areas such as semiconductor factories. The AEMS project is composed of three work packages as follows, 1) Eco-sensor, 2) Prediction of plume propagation using a computer simulation technique, and 3) Environmental protection method. In this presentation, we would like to focus on the study of the eco-sensor. The reason why lipid membranes were selected as a sensing element for environmental pollutants is that the pollutants should be interacted with cell membranes because cells are surrounded by cell membranes containing lipid components. Improving the applicability and the responsibility of bilayer lipid membranes (BLMs) in the eco-sensor, we have investigated automatic BLMs preparation devices. An automatic BLMs preparation device was made by use of an inkjet mechanism. The reproducibility of the BLMs preparation was remarkably improved. The sensitivity to volatile organic chlorinated compounds such as cis-1,2-dichloroethylene was in the order of 10 ppb using monoolein BLMs even in real underground water. We have been also developing a smaller sized eco-sensor for the practical use.
In recent years, we have developed an advanced environmental monitoring system (AEMS) containing the eco-sensor, which means a sensor for the measurement of environmental pollutants, based on lipid membranes for continuous monitoring of underground water in industry areas such as semiconductor factories. The AEMS project is composed of three work packages followed by 1) Eco-sensor, 2) Prediction of plume propagation using a computer simulation technique, and 3) Environmental protection method. In this presentation, we would like to focus on the study of the eco-sensor. The reason why lipid membranes were selected as a sensing element for environmental pollutants is that the pollutants should be interacted with cell membranes because cells are surrounded by cell membranes containing lipid components. Improving the applicability and the responsibility of bilayer lipid membranes (BLMs) in the eco-sensor, we have investigated the automatic BLMs preparation device. An automatic BLMs preparation device was made by use of an inkjet mechanism. The reproducibility of the BLMs preparation was remarkably improved. The sensitivity to volatile organic chloride compounds such as cis-1,2-dichloroethylene was in the order of 10 ppb using the monoolein BLMs even in real underground water. We also have been developing a smaller sized eco-sensor for the practical use.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.