KEYWORDS: Signal to noise ratio, Signal detection, Signal processing, Reconstruction algorithms, Clocks, Cryptanalysis, Analog electronics, Associative arrays, Computing systems, Interference (communication)
Side-channel signals have long been used in cryptanalysis, and recently they have also been utilized as a way to monitor program execution without involving the monitored system in its own monitoring. Both of these use-cases for side-channel analysis have seen steady improvement, allowing ever-smaller deviations in program behavior to be monitored (to track program behavior and/or identify anomalies) or exploited (to steal sensitive information). However, there is still very little intuition about where the limits for this are, e.g. whether a single-instruction or a single-bit difference can realistically be recovered from the signal.
In this paper, we use a popular open-source cryptographic software package as a test subject to demonstrate that, with enough training data, enough signal bandwidth, and enough signal-to-noise ratio, the decision of branch instructions that cause even single-instruction-differences in program execution can be recovered from the electromagnetic (EM) emanations of an IoT/embedded system. We additionally show that, in cryptographic implementations where branch decisions contain information about the secret key, nearly all such information can be extracted from the signal that corresponds to only a single cryptographic operation (e.g. encryption). Finally, we analyze how the received signal bandwidth, the amount of training, and the signal-to-noise ratio (SNR) affect the accuracy of side-channel-based reconstruction of individual branch decisions that occur during program execution.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.