With thin disk laser under intensive pumping high heat flux go through the bonding area with voids inside it will introduce local temperature and stress increase in high-reflective(HR) coating above bonding layer. This will influence the laser damage threshold(LDTH) of local HR coating. An analytical model is developed to analyze the HR coating of thin disk laser illuminated by high fluence pulse laser considering crystal pumping and void inside bonding layer. Analytical results show that the area of HR coating is stressed and heated under crystal pumping. When illuminated by high fluence pulse laser the coating at this area has higher thermal stress. With pump density of 5kW/cm2 if the radius of the void is larger than 100um the LDTH of HR coating will be affected by the void significantly. And the larger the void size is the lower the LDTH of HR coating is. Relative lower laser damage threshold of HR coating above bonding void is testified by experiment.
An numerical model considering solder viscoplasticity is developed to analyze the thermal deformation of laser disk with indium bonded. The characteristic of soft bonding material is described using Anand viscoplasticity model. The Finite Element Method analytical results show that the back surface of laser disk with pumping will deform more significantly with time and finally be steady. Correspondingly the refraction power increase gradually and diffraction loss induced by aspherical aberration decrease gradually. Futhermore when pump spot is larger the refraction power and aspherical aberration will change more due to solder viscoplasticity.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.