We present a sensor design based on a Mach-Zehnder interferometer utilizing sub-wavelength gratings (SWGs) that were included in the waveguide to compensate for the short optical path length and to provide phase modulation. According to 2D finite element method simulations, it is possible to achieve 3-fold enhancement in sensitivity and 50% increase in modulation frequency with the inclusion of SWGs in the sensing arm as well as in the reference arm.
The ability to conduct diagnostic functions on a single chip has long been of interest to the medical community. Decentralization of laboratories combined with reduced costs, increased speed and a higher throughput of potential assays are all driving forces for lab-on-a-chip technology. The small chip sizes facilitate low sample volumes, which in turn allow better control of the molecular interactions close to the sample surface. The design and quality of transducers, microfluidics and functionalization processes have all improved over recent years. Despite the growing interest for lab-on-a-chip components, several challenges remain. Combining all three disciplines into a high-quality well-functioning chip that is cheap to fabricate while providing reproducible results is challenging. A project attempting to address these challenges is presented. The main goal is to design and fabricate a labon-a-chip silicon photonic biosensor with multiple channels for detection of antigens with improved sensitivity and selectivity compared to state-of-the-art. As a proof-of-concept, the sensor is designed for simultaneous detection of three distinct antigens: C-reactive protein (CRP), lipocalin and tumor necrosis factor (TNF). The main challenge lies within their respective concentrations as well as the specificity for each analyte, where concentrations vary from the mg/ml to pg/ml regime. Multiplexing is achieved by using photonic crystal resonators, which function as drop-filters, allowing for single input/output while simultaneously probing select transducers that are functionalized for different chemistries. The individual resonator designs facilitate different limit-of-detections (LODs) and dynamic ranges for each analyte. Preliminary results from the first single channel prototype are presented, while work on the multiplexed sensor continues.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.