Small Woody Features (SWF) represent some of the most stable vegetated linear and small landscape features providing numerous ecological and socio-cultural functions, which can be grouped in four main categories: soil and water conservation, climate protection and adaptation, support to biological diversity, and cultural identity. Copernicus Land monitoring service, through the High-Resolution Layers, aims to map those SWFs at Pan- European level (39 countries, 6 million square kilometers) with the use of more than 37,000 Very High Spatial Resolution (VHSR) Earth Observation (EO) scenes. This unprecedented mapping exercise is focused on the extraction of SWF with a maximum width of 30m and a minimum length of 50m for linear features and a minimum and maximum area of 200 and 5,000m respectively. The main outputs are vector and raster products from the Pan-European coverage of the VHSR image data available from the European Space Agency (ESA) Copernicus Space Component Data Access (CSCDA) VHR IMAGE 2015 dataset. To fulfill this goal with a semi-automated approach, we developed a classification processing chain with the goal of very high computer efficiency and accuracy, using Object Based Image Analysis (OBIA) approach and Cloud-computing solutions. This highly efficient methodology based on differential attribute profiles (DAP) and classical classifier such as Random-Forest is particularly adapted to this exercise since it combines the use of spatial information and the spectral signature of each pixel. In this paper, we present the detailed methodology validated at Pan-European scale with various VHSR data source and landscape characteristics as well as full production results and internal validation.
Multi imaging snapshot systems are used for a wide range of applications in all the spectral ranges. We propose here a study and a realization of a multi-view snapshot system using a kaleidoscope in the Long-Wave Infrared (LWIR) and compatible with uncooled infrared detectors such as microbolometers. The optical system has a high numerical aperture, a wide range of fields of view and uses a single focal plane array. We will establish here the advantages of this technology on other design strategies and especially the kaleidoscope design will be compared with the TOMBO design. Then the optical conception rules for every subset of the kaleidoscope architecture will be described and the results of a first demonstrator will be presented. The features of this system will be compared with a TOMBO-based system with a front afocal.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.