The goal of deformable mirrors (DMs) is to correct aberrated optical wavefronts in spaceborne electro-optical (EO) payloads. It is used as part of an active/adaptive optics system. A continuous-surface, metal-based DM is highly reliable and less complex to assemble, has better stability of the active surface, is less expensive, and can be manufactured quickly. In addition, metal DM with actuation away from the active surface makes the overall configuration scalable. Continuing our previous work on deformable metal mirrors, this work presents the design, validation, and qualification of an aluminum DM using 25 piezoelectric actuators, which include an actuator in the center of the mirror, to improve the spherical aberration correction accuracy. The optomechanical design and analysis of the deformable mirror assembly (DMA) are also presented for performance and survival loads. Later, a qualification model (QM) was built with vacuum-compatible closed-loop piezoelectric actuators. The correction accuracy was demonstrated at the QM by correcting aberrations in the mirror itself. The QM was successfully tested in the space environment in the ThermoVac for operating temperature limits of 20°C±5°C and demonstrated survivability for storage temperature limits of 20°C±40°C. Likewise, the survivability of QM for launch environments such as sinusoidal and random vibration loads is demonstrated. The successful completion of all these tests has improved the maturity of this technology to the technology readiness level of 7 and is now ready to be configured for the appropriate spaceborne EO payload.
The mirror repositioning system is one critical system in large-size deployable space telescopes that aids in correcting errors in mirror orientation once deployed. Stewart mechanism is employed for reorienting the mirror due to its potential for use in high-precision applications, and a high-range and high-accuracy Stewart platform for positioning the mirror was designed using dual-resolution actuators. System characterization is crucial for understanding, optimizing, and evaluating the performance of a system. It provides insight into a system’s behavior, strengths, weaknesses, and limitations, aiding in troubleshooting, design decisions, and quality assurance. Overall, it forms the foundation for ensuring the functionality, efficiency, and reliability of a system throughout its lifecycle. We discuss the techniques adopted for characterizing the mirror repositioning system and the methods employed for error reduction in the system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.