The purpose of this paper is on the study of data fusion applications in traditional, spatial and aerial video stream applications which addresses the processing of data from multiple sources using co-occurrence information and uses a common semantic metric. Use of co-occurrence information to infer semantic relations between measurements avoids the need to make use of such external information, such as labels. Many of the current Vector Space Models (VSM) do not preserve the co-occurrence information leading to a not so useful similarity metric. We propose a proximity matrix embedding part of the learning metric embedding which has entries showing the relations between co-occurrence frequency observed in input sets. First, we show an implicit spatial sensor proximity matrix calculation using Jaccard similarity for an array of sensor measurements and compare with the state-of-the-art kernel PCA learning from feature space proximity representation; it relates to a k-radius ball of nearest neighbors. Finally, we extend the class co-occurrence boosting of our unsupervised model using pre-trained multi-modal reuse.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.