The formation and growth of metal soaps is of interest in heritage science, as soaps have been linked to a range of alteration and degradation phenomena potentially affecting works of art. However, current approaches detect metal soaps mainly in an invasive way or only at a late formation stage when the metal soaps are formed on the surface of the artwork. In contrast, Optical Coherence Tomography (OCT) has been proven to be a very suitable tool to obtain subsurface morphological information of complex multi-layered systems, such as paintings, in a non-invasive way. In this work, the capability of detecting metal soaps with an 810 nm ultra-high resolution (UHR) OCT in a selection of real and mock-up samples has been explored with OCT virtual cross-section images complemented with invasive structural and chemical analysis (SEMEDX and ATR-FTIR spectroscopy and imaging). Although the visualization of metal soaps with OCT was evident in some samples, we also show that this is not always the case. In addition, the results of this work show that extra care is needed when interpreting OCT cross-section images to avoid the risk of misinterpreting features present in the paint stratigraphy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.