Dielectric elastomers (DEs) have been extensively studied as DE actuators, DE generators, and DE sensors. Compared with DE actuators and generators, DE sensing application has the advantage that it is no need for high voltage. However, to realize the high sensitivity of the DE sensor, a well-designed structure is essential. A typical DE sensor consists of DE membrane covered by compliant electrodes on both sides. Expanding in the area and shrinking in the thickness of DE membrane subjected to external force will lead to the increasement of the capacitance. We propose a novel DE sensor to detect compressive force. The DE sensor consists of three layers. The two layers of outside can penetrate each other to deform the middle layer and achieve high sensitivity for compressive force measurement. This sensor consists of a series of sensor elements made of DE membrane with out-of-plane deformation. Each sensor element experiences highly inhomogeneous large deformation to obtain high sensitivity. We conduct the experiment to optimize the performance of the sensor element, and also the corresponding theoretical analysis is developed. The effects of the prestretches and the aspect ratios of the sensor element on the sensitivity are achieved. The soft sensor composed of a series of such sensor elements may comply with complicated surfaces and can be used to detect both the total value and the distribution of the compressive force exerted on the surface. Furthermore, the reliability of the sensor element is studied by additional experimental investigation. The experiment shows that the sensor element operates steadily after 2000 cyclic loadings. This study provides guidance for the design and performance analysis of soft sensors.
This work has been published in the Journal of Applied Mechanics, 82(10), No. 101004 (2015).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.